

User’s Guide

Visual Cafe for Java
Windows Edition

TM TM

Symantec Visual Cafe

TM

 for Java

TM

 User’s Guide

The software described in this book is furnished under a license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Notice

Copyright © 1997 Symantec Corporation.

All Rights Reserved.

Released: 8/97 for Visual Cafe for Java 2.0

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior consent in writing from Symantec
Corporation, 10201 Torre Avenue, Cupertino, CA 95014.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR IN THIS MANUAL
ARE IMAGINARY AND DO NOT REFER TO, OR PORTRAY, IN NAME OR SUBSTANCE, ANY ACTUAL
NAMES, COMPANIES, ENTITIES, OR INSTITUTIONS. ANY RESEMBLANCE TO ANY REAL PERSON,
COMPANY, ENTITY, OR INSTITUTION IS PURELY COINCIDENTAL.

Every effort has been made to ensure the accuracy of this manual. However, Symantec makes no
warranties with respect to this documentation and disclaims any implied warranties of merchantability
and fitness for a particular purpose. Symantec shall not be liable for any errors or for incidental or
consequential damages in connection with the furnishing, performance, or use of this manual or the
examples herein. The information in this document is subject to change without notice.

Trademarks

Symantec Visual Cafe, Symantec, and the Symantec logo are U.S. registered trademarks of Symantec
Corporation.

Other product names mentioned in this manual may be trademarks or registered trademarks of their
respective companies and are the sole property of their respective manufacturers.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

SYMANTEC LICENSE AND WARRANTY
The software which accompanies this license (the "Software") is the
property of Symantec or its licensors and is protected by copyright
law. While Symantec continues to own the Software, you will have
certain rights to use the Software after your acceptance of this li-
cense. Except as may be modified by a license addendum which
accompanies this license, your rights and obligations with respect
to the use of this Software are as follows:

• You may:

(i) use one copy of the Software on a single computer;

(ii) make one copy of the Software for archival purposes, or
copy the software onto the hard disk of your computer and retain
the original for archival purposes;

(iii) use the Software on a network, provided that you have a
licensed copy of the Software for each computer that can access the
Software over that network;

(iv) after written notice to Symantec, transfer the Software on
a permanent basis to another person or entity, provided that you
retain no copies of the Software and the transferee agrees to the
terms of this agreement; and

(v) if a single person uses the computer on which the Soft-
ware is installed at least 80% of the time, then after returning the
completed product registration card which accompanies the Soft-
ware, that person may also use the Software on a single home com-
puter.

• You may not:

(i) copy the documentation which accompanies the Software;

(ii) sublicense, rent or lease any portion of the Software;

(iii) reverse engineer, decompile, disassemble, modify, trans-
late, make any attempt to discover the source code of the Software,
or create derivative works from the Software; or

(iv) use a previous version or copy of the Software after you
have received a disk replacement set or an upgraded version as a
replacement of the prior version, unless you donate a previous ver-
sion of an upgraded version to a charity of your choice, and such
charity agrees in writing that it will be the sole end user of the prod-
uct, and that it will abide by the terms of this agreement. Unless you
so donate a previous version of an upgraded version, upon upgrad-
ing the Software, all copies of the prior version must be destroyed.

• Sixty Day Money Back Guarantee:

If you are the original licensee of this copy of the Software and are
dissatisfied with it for any reason, you may return the complete
product, together with your receipt, to Symantec or an authorized
dealer, postage prepaid, for a full refund at any time during the sixty
day period following the delivery to you of the Software.
• Limited Warranty:

Symantec warrants that the media on which the Software is distrib-
uted will be free from defects for a period of sixty (60) days from
the date of delivery of the Software to you. Your sole remedy in the
event of a breach of this warranty will be that Symantec will, at its
option, replace any defective media returned to Symantec within
the warranty period or refund the money you paid for the Software.
Symantec does not warrant that the Software will meet your re-
quirements or that operation of the Software will be uninterrupted
or that the Software will be error-free.

THE ABOVE WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL
OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUD-
ING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU
MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO
STATE.

• Disclaimer of Damages:

REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN
FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL SYMAN-
TEC BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL,
INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROF-
ITS OR LOST DATA ARISING OUT OF THE USE OR INABILITY TO
USE THE SOFTWARE EVEN IF SYMANTEC HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION
OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES
SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY
TO YOU.

IN NO CASE SHALL SYMANTEC’S LIABILITY EXCEED THE PUR-
CHASE PRICE FOR THE SOFTWARE. The disclaimers and limita-
tions set forth above will apply regardless of whether you accept
the Software.

• U.S. Government Restricted Rights:

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by
the Government is subject to restrictions as set forth in subpara-
graph (c) (1) (ii) of the Rights in Technical Data and Computer Soft-
ware clause at DFARS 252.227-7013 or subparagraphs (c) (1) and
(2) of the Commercial Computer Software-Restricted Rights clause
at 48 CFR 52.227-19, as applicable, Symantec Corporation, 10201
Torre Avenue, Cupertino, CA 95014.

• General:

This Agreement will be governed by the laws of the State of Cali-
fornia. This Agreement may only be modified by a license adden-
dum which accompanies this license or by a written document
which has been signed by both you and Symantec. Should you
have any questions concerning this Agreement, or if you desire to
contact Symantec for any reason, please write:

Symantec Customer Service, 175 W. Broadway,
Eugene, OR 97401

Language Addendum

If the Software is a Symantec language product, then you have a royalty-free right to include object code
derived from the libraries in programs that you develop using the Software and you also have the right to
use, distribute, and license such programs to third parties without payment of any further license fees, so
long as a copyright notice sufficient to protect your copyright in the program is included in the graphic
display of your program and on the labels affixed to the media on which your program is distributed.
You also have a royalty-free right to include unmodified Symantec Class files required by your programs.
The Symantec Class files are in the following installed zip file in the Visual Cafe directory –
VisualCafe\redist\symbeans.jar. The Java Virtual Machine (VM) or Just In Time (JIT) compiler are not
freely distributable.

C O N T E N T S

Section I Using Visual Cafe

Chapter 1 Welcome to Visual Cafe
Features ... 1-2

Visual Page ... 1-2
Visual Cafe Web Development Edition .. 1-4
Visual Cafe Professional Development Edition .. 1-6
Visual Cafe Database Development Edition ... 1-6

What’s new in Visual Cafe 2.0 ... 1-7
Contextual Menus ... 1-7
ZIP archive and JAR (Java ARchive) support ... 1-7
Open by Name .. 1-7
Version Compatibility .. 1-8
Project and environment management ... 1-8
Drag-and-drop ... 1-9
Display options .. 1-9
Debugger .. 1-9
Class Browser and Editor .. 1-9
New and enhanced Wizards .. 1-9
LiveUpdate .. 1-10

Visual Cafe documentation ... 1-10
Visual Cafe Getting Started and Tour .. 1-10
Online Help .. 1-10
User’s Guide ... 1-11

Prerequisites for using Visual Cafe ... 1-11
System requirements .. 1-12

Starting Visual Cafe ... 1-12
The Visual Cafe environment .. 1-13

Windows ... 1-13
Toolbars .. 1-14
Visual Cafe windows ... 1-15
Editors ... 1-15

How much Java do I need to know to use Visual Cafe? .. 1-15
What’s next? .. 1-16

Chapter 2 Developing in Visual Cafe
Putting Visual Cafe to work .. 2-1

Understanding Visual Cafe components .. 2-2
Forms hold your Java program together .. 2-3
Projects keep your work together .. 2-4
Using workspaces to customize your work environment 2-4

Debugging with Visual Cafe ... 2-4
Symantec’s Just-in-time compiler and the Visual Cafe environment 2-5
Sun Microsystems’ Java Compiler and JDK .. 2-5

Overview of creating a Java program ... 2-5
Overview of creating an applet .. 2-6
Overview of creating an application ... 2-7
Overview of creating a dbAWARE applet or application 2-7

Chapter 3 Working with projects and workspaces
What is a project? .. 3-1

The project file and the project folder ... 3-2
Basic concepts of working with a project ... 3-3
Looking at the Objects view .. 3-3
Looking at the Packages view ... 3-6
Looking at the Files view ... 3-8

Creating projects by using templates ... 3-8
Choosing the project template ... 3-9
Constructing a logically arranged project folder ... 3-10
Looking at the files in the project folder ... 3-12
Adding files to a project ... 3-13
Working on multiple projects ... 3-14
Compiling projects ... 3-15
Defining project options ... 3-15

Beginning to work with a project ... 3-15
Creating a new project .. 3-15
Opening an existing project ... 3-16
Saving, renaming, and copying a project .. 3-17
Adding files to and removing files from projects ... 3-17
Migration from Visual Cafe 1.0 to Visual Cafe 2.0 ... 3-22
Closing a project ... 3-23

Using the Project window ... 3-24
Dragging-and-dropping into the Project window ... 3-24
vi

Viewing the files in a project .. 3-26
Adding a new file to a project .. 3-26
Adding an existing file to a project ... 3-27
Deleting a file from a project .. 3-27
Copying a file of a project .. 3-28

Working with components in a project .. 3-29
Viewing the components and HTML files in a project 3-29
Adding a component .. 3-30
Copying a component ... 3-30
Renaming a component ... 3-31
Deleting a component ... 3-32

Working with packages .. 3-33
Viewing the packages in a project ... 3-33
Adding packages to Visual Cafe .. 3-34

Setting project-level options ... 3-34
Project Options ... 3-35
Project types ... 3-40
Specifying what applets to run and the HTML file .. 3-41
Making applets run in the Applet Viewer or a browser 3-42
Specifying the main class to run for an application ... 3-43
Specifying arguments for application execution ... 3-44
Specifying whether to parse imports ... 3-44
Specifying whether to clear messages before builds 3-45

Setting compiler options for a project ... 3-45
Specifying general compiler options .. 3-46
Specifying file search paths and the output folder .. 3-47
Using Version Control ... 3-51
Setting remote debugging options for a project ... 3-52
Defining the Visual Cafe startup mode .. 3-52
Automating source file backups ... 3-53
Defining a new default template ... 3-54
Creating a project template and adding it to the library 3-54
Deleting a project template .. 3-55

Use Workspaces to customize your work environment .. 3-55
Working with subprojects ... 3-58

Adding subprojects .. 3-58
Objects View ... 3-59
Files view .. 3-59
vii

Project options and subprojects .. 3-60
Importing source code .. 3-61
The Visual Cafe main file menus ... 3-61

The File menu .. 3-61
New Project… ... 3-62
New File .. 3-63
Open… ... 3-63
The Edit menu ... 3-65
The Search menu .. 3-66
The Insert menu ... 3-69
The Object menu ... 3-70
The Window menu ... 3-71
The Help menu .. 3-72

Chapter 4 Working with Java Source Code
Using the Class Browser .. 4-1

Grouping and sorting classes and members .. 4-3
Controlling the display of inherited methods .. 4-4

Navigating the panes .. 4-5
Navigating the Classes pane ... 4-5
Using the Classes pane ... 4-5
Finding a class ... 4-6
Adding a class ... 4-7
Adding a subclass from the Class Browser ... 4-7
Viewing and editing the source code for a class .. 4-10
Adding a method from the Class Browser ... 4-10
Navigating the Members pane ... 4-11
Navigating the Source pane ... 4-15
Configuring the Class Browser and Hierarchy Editor 4-16

Navigating the Hierarchy Editor .. 4-17
Working with subclasses .. 4-19

Changing inheritance relationships .. 4-20
Deleting inheritance relationships .. 4-20
Using the Class Attributes dialog box .. 4-20

Using the Insert Class Wizard .. 4-20
Using the Source Editor ... 4-22

Creating a new document .. 4-23
Adding code to a Java source file .. 4-23
viii

Editing source code ... 4-24
Correcting your source code ... 4-25
Viewing a component’s Java source code ... 4-25
Enhancing an object’s Java source code ... 4-25
Binding code to a form or component .. 4-26
Binding code to a menu command ... 4-27
Programming hot keys ... 4-27
Moving around in a file with the Search menu .. 4-32
Searching through and comparing multiple files ... 4-33
Adding a method from the Source window .. 4-33
Enhancing Java code for a component .. 4-34
Specifying the search file type and location ... 4-34
Specifying the file search path ... 4-35
Setting Advanced Search Criteria .. 4-37

Adding packages to Visual Cafe ... 4-37
Using the Package view .. 4-38

Working with events ... 4-39
Using events with your own components .. 4-39
Adding an event to a component ... 4-39
Editing an event handler ... 4-40
Deleting an event handler .. 4-41
Editing event methods ... 4-41

Working with the Interaction wizard .. 4-41
Changes between the JDK 1.0 and 1.1 event models 4-42
Creating an interaction .. 4-44
Changing an existing interaction .. 4-46
Deleting an interaction ... 4-47

Using the Classes, and Hierarchy Editor menus ... 4-50
Using the Classes menu .. 4-50
Using the Hierarchy Editor right-click menu .. 4-51

Using Macros in Visual Cafe .. 4-52
Recording and playing the Default Macro .. 4-52
Saving the default macro and using it with other macros 4-53
Using recorded macros other than the default macro 4-53
Using the ScriptMaker dialog box .. 4-53

Chapter 5 Including Visual Components
What are Visual Cafe forms? .. 5-1
ix

Understanding the container class .. 5-2
Working with basic user interface components ... 5-4

Creating component layouts .. 5-4
Working in the Form Designer ... 5-5
Displaying graphics in the Form Designer .. 5-6
Creating Java code ... 5-6

Designing a GUI with Visual Cafe ... 5-7
Adding forms to the project ... 5-8
Adding components to a form ... 5-9
Arranging components on your forms .. 5-14
Modifying component properties ... 5-19
Creating component interactions ... 5-20

Creating menus with the Menu Designer .. 5-21
Using the Menu Designer pop-up menu ... 5-22
Adding a menu to a form ... 5-23
Copying a menu .. 5-23
Adding a menu bar to a frame or dialog box ... 5-24
Adding menus to a menu bar ... 5-24
Adding menu items to menus .. 5-25
Adding submenus to menu items ... 5-25
Editing a menu structure .. 5-26
Editing menu bars and menus .. 5-26
Associating command keys and menu items .. 5-27
Binding code to a menu item ... 5-28

Working with the Component Palette ... 5-28
Using the InvisibleHTMLLink component ... 5-29
Using the MultiList component .. 5-29
Using the ScrollingPanel container .. 5-30
Using the TabPanel container .. 5-31
Using the TreeView component ... 5-32
Building a custom Palette .. 5-33
Creating a Palette tab .. 5-33
Adding components to the Palette ... 5-33
Moving Palette components .. 5-35
Deleting components from the Palette ... 5-35

Working with the Component Library ... 5-36
Viewing a component’s Java source .. 5-37
x

Chapter 6 Compiling, running, and deploying your program
Introduction .. 6-1
Concepts of applets and applications ... 6-1

Applets .. 6-1
Advantages and disadvantages ... 6-2
Applications ... 6-3

Compiling and running .. 6-4
Setting compiler options .. 6-5
Correcting your source code ... 6-7

Deploying Java programs ... 6-7
Deploying your applet .. 6-8
Including your applet in a Web page .. 6-10
Deploying your application ... 6-13

Determining what class files an applet or application needs 6-16
Using the JAR command to get the class files your Java program needs 6-16
Using SJ to determine what class files your Java program needs 6-17

Configuring UNIX-based Web servers .. 6-17
Building your Java program .. 6-18

Building your project with commands in the Project menu 6-18
Messages window ... 6-19

Chapter 7 Working with JavaBeans
JavaBeans and Java ... 7-1
JavaBean terminology .. 7-2
Basic JavaBean structure ... 7-2
The JavaBeans services ... 7-2

Property management ... 7-3
Introspection ... 7-4
Event handling ... 7-6
Persistence ... 7-7
Application builder support .. 7-8

Creating a Bean ... 7-8
Bean design fundamentals ... 7-9
Testing your Bean ... 7-9

Adding and using Beans in Visual Cafe ... 7-9
Using JAR files .. 7-10
Creating a JAR file .. 7-10
Expanding a JAR file .. 7-11
xi

Converting components (description files) to JavaBeans 7-11
Adding a JavaBeans component to the Component Library 7-13
Creating a JavaBean component .. 7-14
Adding Visual Cafe information to a JavaBean ... 7-15

SymantecBeanDescriptor .. 7-16
ConnectionDescriptor ... 7-16
Code samples ... 7-17

Adding JavaBeans to the Component Library ... 7-18
Deleting JavaBeans from the Component Library ... 7-20
Viewing and changing JavaBean properties .. 7-20
Packaging and deploying JavaBeans .. 7-21
Visual Cafe’s tools for building Beans .. 7-21

Bringing Beans into the Visual Cafe environment .. 7-22
Bean associates ... 7-22

Appearance ... 7-23
Renaming a Bean .. 7-23
Hierarchical properties ... 7-23
Internationalization properties .. 7-23

Chapter 8 Debugging Java Programs
Using the Debug workspace .. 8-2

Overview of the Breakpoints window ... 8-3
Overview of the Variables window ... 8-3
Overview of the Watch window ... 8-4
Overview of the Threads window ... 8-4
Overview of the Call Stack window ... 8-5
Overview of the Messages window ... 8-5
Overview of the Source window .. 8-6

Running the Debugger .. 8-6
Starting a debugging session ... 8-7
Scrolling in the Source Editor .. 8-7
Using the Debug toolbar .. 8-8

 Stepping through code .. 8-8
Pausing a program ... 8-9
Stopping a program ... 8-9
Stepping into a method ... 8-9
Using Debug > Step Into ... 8-9
Stepping over a method .. 8-10
xii

Using Debug Step Over .. 8-10
Stepping out of a method .. 8-10
Toggling a breakpoint .. 8-10
Watching a variable ... 8-10
Running to the first line .. 8-11
Running the program to the end .. 8-12
Running to the cursor location ... 8-12
Resuming a program ... 8-12
Restarting a program ... 8-12

Handling exceptions ... 8-13
Throwing exceptions .. 8-13
Catching exceptions .. 8-13

Setting exceptions in Visual Cafe ... 8-14
Changing source code ... 8-15

Using the Source window .. 8-15
Working with breakpoints ... 8-16

Setting a breakpoint on a line number .. 8-17
Setting simple breakpoints .. 8-18
Setting a breakpoint on a method name .. 8-18
Setting a breakpoint on a variable or expression .. 8-19
Setting a conditional breakpoint ... 8-19
Clearing breakpoints .. 8-20
Enabling or disabling a breakpoint .. 8-20
Ignoring all breakpoints .. 8-21
Viewing the source for a breakpoint .. 8-21
Stepping through code when the program is paused 8-22

Using the Variables window ... 8-23
Viewing the value of a variable ... 8-23
Viewing type information for a variable .. 8-24
Modifying a variable in the Variables window ... 8-24

Using expressions in the Watch window .. 8-24
Adding a variable to the Watch window ... 8-25
Modifying a variable or expression in the Watch window 8-25
Deleting a variable or expression from the Watch window 8-26

Using the Call Stack window .. 8-26
Viewing parameters for a method on the Call Stack window 8-27
Viewing variables for a method on the call stack .. 8-27
Viewing source for a method on the call stack ... 8-28
xiii

Ending a debugging session ... 8-28
Debugging threads ... 8-28

Using the Threads window .. 8-29
Debugging a single thread ... 8-31

Debugging remotely ... 8-34
Setting up for remote debugging ... 8-34
Starting remote applets or application debugging .. 8-34
Ending remote applets or application debugging .. 8-35

Using Debugger-specific menus ... 8-35
Overview of the Project menu ... 8-35
Overview of the Debug menu .. 8-36
Overview of the Insert menu .. 8-37
Overview of the Breakpoints menu .. 8-38
Overview of the Variables menu .. 8-39
Overview of the Threads menu .. 8-39
Overview of the Calls menu ... 8-39
Overview of the Source menu ... 8-40
Overview of the Window menu .. 8-41

Chapter 9 Fine-Tuning Visual Cafe
Setting environment options ... 9-1

Setting environment options in the General tab ... 9-1
Setting debugging options for the environment .. 9-3
Specifying text formatting for Visual Cafe windows ... 9-5
Mapping Visual Cafe commands to key sequences ... 9-8
Specifying key editing options for the Source Editor 9-10
Customizing the display font and color in Visual Cafe windows 9-11
Specifying backup and save options .. 9-13
Specifying code editing options ... 9-15
Controlling toolbar position and visibility .. 9-17
Enabling ValueTips .. 9-17
Customizing Class Browser and Class Hierarchy window editing 9-18
Changing editor properties .. 9-18

Updating Visual Cafe with LiveUpdate .. 9-19
Using LiveUpdate over the Internet ... 9-20
Using LiveUpdate with your modem .. 9-20
Uninstalling LiveUpdate upgrades .. 9-23

Troubleshooting Visual Cafe for Windows .. 9-24
xiv

Limitations of the Java language .. 9-24
Common programming errors .. 9-25
Compiler errors .. 9-25
Using Visual Cafe to locate compiler errors .. 9-26
Cross-platform considerations .. 9-26

Visual Cafe cross-development ... 9-26
Browser issues ... 9-26

When do you have to write your own code? ... 9-27
Event handling ... 9-27
Disabling automatic code generation in Visual Cafe 9-27
Disabling code that is automatically generated .. 9-28
How to tell when your Visual Cafe environment becomes corrupted 9-28

Section II Professional Features

Chapter 10 Creating Native Win32 Java Applications
Creating native executables and DLLs ... 10-2

Setting project options for native applications ... 10-3
Registering DLLs using SNJREG .. 10-12
Debugging Native Win32 Java applications ... 10-13
Deploying native Win32 applications, DLLs and libraries 10-13

Converting Java applications from bytecode to native Win32 10-14
Considerations when creating native Win32 Java applications 10-15

Linking native Java applications ... 10-15
The main class in bytecode and native applications 10-16

Working with samples of native applications ... 10-17
Example of creating an executable file ... 10-17
Example of creating an executable with a DLL ... 10-18

Chapter 11 Incremental Debugging and Importing Projects
Incremental debugging ... 11-1
Importing projects from Cafe .. 11-2
Importing Visual J++ projects into Visual Cafe ... 11-3

Considerations when importing Visual J++ projects 11-5
xv

Section III Database Connectivity

Chapter 12 Developing a dbAWARE project
Overview .. 12-2

Setting the Database Environment Options ... 12-2
About the dbAWARE components ... 12-3
About the database browser, dbNAVIGATOR ... 12-10
The dbAWARE wizards .. 12-11
Database manipulation functions ... 12-12

Creating a dbAWARE project ... 12-12
Starting dbANYWHERE ... 12-13
Creating the database for your project .. 12-14
Defining your data source .. 12-15
Using the dbAWARE project wizard ... 12-19
Using the Add Table wizard ... 12-28

Using dbNAVIGATOR in form development ... 12-29
Connecting to a server using dbNAVIGATOR ... 12-30
Connecting to a database .. 12-30
Adding a dbAWARE text field to a form ... 12-31
Refreshing dbNAVIGATOR ... 12-32
Adding a database grid component .. 12-32
Disconnecting from a database ... 12-34

Changing grid attributes ... 12-34
Changing foreground and background cell colors .. 12-35
Changing cell fonts .. 12-35
Changing Grid column attributes ... 12-36

Chapter 13 Using dbANYWHERE
About dbANYWHERE ... 13-1

What is dbANYWHERE? ... 13-1
How the dbANYWHERE architecture works ... 13-2
Configuring dbANYWHERE .. 13-3

One machine for local databases ... 13-4
Two machine configuration for remote databases .. 13-4
Two machine configuration for local and remote databases 13-5
Three machine configuration .. 13-5

Using the dbANYWHERE packages ... 13-6
xvi

Using the dbANYWHERE packages for development 13-7
Setting up the dbANYWHERE packages for a deployed application 13-7

Configuring dbANYWHERE as a Windows NT service (Windows NT only) 13-8
Running the service ... 13-9
Viewing messages .. 13-9

Connecting to a data sources ... 13-10
Connecting to a Sybase SQL Anywhere and Watcom data source 13-10
Connecting to an Informix data source .. 13-11
Connecting to Microsoft Access data source by means of JDBC 13-11
Connecting to an ODBC SQL-based data source by means of JDBC 13-12
Connecting to an ODBC Xbase data source by means of JDBC 13-13
Connecting to Microsoft SQL data source by means of JDBC 13-13
Connecting to Sybase SQL data source by means of JDBC 13-14
Connecting to Oracle data source by means of JDBC 13-14

Testing a data source connection ... 13-15
Using the dbANYWHERE tools .. 13-16

Using the DataSource tool .. 13-16
Editing the data source .. 13-17

Using the dbANYWHERE Admin tool ... 13-18
Connecting to a dbANYWHERE server ... 13-19
Checking dbANYWHERE server statistics ... 13-19
Checking dbANYWHERE connections ... 13-20
Testing link performance ... 13-21
Changing dbANYWHERE properties .. 13-22
Setting the dbANYWHERE server URL ... 13-23

Logging messages ... 13-23
Log menu .. 13-25

Allocating dbANYWHERE resources .. 13-26
Allowing remote administration ... 13-27
License .. 13-27
LiveUpdate ... 13-29

INDEX ..i
xvii

I

U s i n g V i s u a l

C a f e

C H A P T E R 1
Welcome to Visual Cafe

Symantec’s Visual Cafe family of products is the first visual Rapid
Application Development (RAD) tool designed exclusively for the Java
programming language. Visual Cafe is a complete form-centric
development environment that provides you with a rich set of What-You-
See-Is-What-You-Get (WYSIWYG) tools and components necessary to
develop, debug, and deploy high-performance Web applets, and stand-
alone Java applications. Additional tools such as JavaBean and Java
component libraries, graphic libraries, templates, and graphic editors
provide the complete solution for the Java developer or sophisticated Web
developer.

Visual Cafe is available in three editions:
■ Visual Cafe Web Development Edition (WDE) provides the most

complete solution for the Web developer with technically sophisticated
needs. This edition is also for programmers who are new to Java. The
Visual Cafe WDE includes support for the professional who writes,
debugs, and uses HTML scripting and wants to take advantage of the
power of the Java language and push their Web pages to the edge of
technology.

■ Visual Cafe Professional Development Edition (PDE) is for Developers
who need the latest and most powerful Java features available in their
development environment. It provides a unique customizable
environment with wizards, reusable Java components, class libraries,
project level management tools, incremental debugging, and remote
debugging to speed your development process.

■ Visual Cafe Database Development Edition (dbDE) is for Database
Application Developers who want full database connectivity. Featuring
a sophisticated set of high level tools and wizards, Visual Cafe dbDE
allows you to quickly select database tables for use in your application,
1-1

Chapter 1: Welcome to Visual Cafe

automatically generate the associated Java code to manage the
associations, adds the appropriate components to the application form,
and binds components with the dbANYWHERE Server.

All three editions of Visual Cafe also contains Visual Page, Symantec’s
visual Web design tool, Netscape Navigator, and full JDK 1.1 support.

Features
This section describes the features of Visual Page and each edition of the
Visual Cafe family of products.

Visual Page

Visual Page is a tool for creating and publishing documents for the Web.
It’s a what-you-see-is-what-you-get (WYSIWYG) environment that includes
a visual designer, source code editor, and publishing utility. Visual Page is
fully integrated into Visual Cafe to provide a complete development
environment to design, develop, test, and deploy your Java projects.

Accessible and powerful feature set

Unlike most other HTML-based Web page editors, Visual Page displays
your Web page so you see it as it’s created. You can drag and drop blocks
of text, graphics, and other Web-based media onto a Web page, and Visual
Page creates the necessary HTML code for you.

Extensive HTML authoring tools

Visual Page doesn’t require that you enter complex HTML code—entering
and modifying content is quick and easy.

If you prefer to directly control your HTML code, you can view and edit
the HTML code generated by Visual Page in the source editor. Changes
made in the source editor are automatically reflected in the main editing
window.

State-of-the-art media support

Visual Page offers a wide range of advanced Web media tools. Frames,
tables, QuickTime movies, Navigator plug-ins, Java applets, JavaScript code
and CGI-based forms can all be inserted effortlessly into your Web pages.
1-2

Features

Extensive template and sample set

The Visual Page Designer’s Toolkit consists of a number of templates and
sample documents. The templates cover a wide range of document styles,
and the sample documents cover a number of document types (such as
product plans and registration forms). These templates can be used as the
basis for your business or personal Web sites, saving you hours of design
time in the process.

One-step publishing

In addition to its sophisticated layout tools, Visual Page includes several
Web site management tools. With Visual Page, you can create your Web
site on your local hard drive, and then publish the entire site to a Web
server, without ever leaving Visual Page. No third party utility packages are
necessary. When you need to perform routine maintenance on your Web
site (for example, deleting unneeded files), you can do that within Visual
Page as well.

Visual Page is also a useful tool for testing the links between pages in your
site. Using Visual Page’s preview mode, you can test and correct links
simply and quickly.

Visual Page Documentation

Visual Page comes with a complete set of documentation and online help
to assist you in the process of learning and using Visual Page. These
documents are described below.

User s Guide

This may be the document you turn to most frequently as you work with
Visual Page, as it contains step-by-step information on using Visual Page’s
features.

The contents of the User’s Guide cover creating Web pages, advanced Web
features, site publishing, and site maintenance. A glossary, covering
commonly used Web-related terms, is also included.

Visual Page Getting Started Guide and Tour

The Visual Page Getting Started Guide consists of installation instructions
for Visual Page, and a Tour. The Tour is designed to familiarize you with
1-3

Chapter 1: Welcome to Visual Cafe

the main features of Visual Page by guiding you through the process of
building a working Web page. It requires no previous experience in Web
page development, is a quick way to learn Visual Page—and it’s fun!

Online help

Visual Page has an extensive online help system, providing all of the
procedures for building a Web page. To access Visual Page’s Help, choose
Help Topics from the Help menu. From dialog boxes, toolbars, and
windows, you can press F1 to access Help that is specific to your current
Visual Page activity.

Visual Cafe Web Development Edition

Featuring a sophisticated set of high level, two-way tools, Visual Cafe WDE
is the leading Java development environment. Two-way tools allow you to
work in the Source Code Editor, or visually in the Form Editor and your
project is updated as you work. Source code is generated for you while
you work.

Support for JDK 1.1 (new in version 2.0)

With version 1.1 of the Java Development Kit, also known as JDK 1.1, you
can write applets and applications that conform to the 1.1 Java Core API. It
includes improvements in functionality, performance, and quality over JDK
1.0.2.

JDK 1.1 offers new capabilities: Internationalization, signed applets, JAR
file format, AWT (window toolkit) enhancements, JavaBeans(tm)
component model, networking enhancements, Math package for large
numbers, Remote Method Invocation, Reflection, database connectivity,
Native Interface, Object Serialization, Inner Classes, and performance
enhancements.

Form-centric development environment

The form-centric development environment provides a powerful integrated
form design tool. With form-centric development, you can drag and drop
components as well as visually create their interactions between them.
1-4

Features

Component Palette

The configurable component palette contains your favorite form
components. You can drag and drop standard Visual Cafe components as
well as add your own custom components to the Component Palette.

Component Library

The Component Library is a repository of components for forms, windows,
and databases. You can take advantage of the libraries supplied by Visual
Cafe or create and add your own. Since the library is extensible, Visual
Cafe provides support for add-in third party components.

Interaction Wizard

The Interaction Wizard guides you visually through specifying actions
based on form components events.

Automatic code generation

Form and property sheet modifications generate real-time source code.
Source code is automatically updated and generated as you work in your
projects. In addition, Visual Cafe allows you to have complete control over
your source code at any time.

Debugger

The source-level debugger can be used to debug applications that are built
using Visual Cafe. The debugger uses browser-style windows to display
information about the process currently being debugged. One feature of
the debugger is a Stack Crawl pane that contains a list of all stack frames
for the program counter location in your code.

These windows include breakpoint, calls, messages, variables, and threads.

Hierarchical view

The Project, Class Editor, and Hierarchy windows incorporate a tree view
to collapse and expand the various scopes, presenting you with visual
relationships among the many parts of even the most complex projects.
1-5

Chapter 1: Welcome to Visual Cafe
Insert Class Wizard

With Visual Cafe’s Insert Class Wizard, you can effortlessly integrate your
own custom classes or third-party classes.

Visual Cafe Professional Development Edition

The Visual Cafe PDE includes all the standard features of Visual Cafe WDE,
plus enhanced debugging tools that offer remote debugging and
multithread support, as well as a unique incremental debugger that lets
you keep coding while you debug.

Importing projects from Microsoft Visual J++

Reuse your Microsoft Visual J++ projects by importing them into Visual
Cafe PDE and add power to them that you couldn’t do before.

Native building and debugging native applications

You can now build Win32 applications and DLLs and debug them in Visual
Cafe and add then add the DLLs to the Windows registry.

Incremental Debugging

You can fix your program’s bugs in the debugger without having to
recompile all the time.

Visual Cafe Database Development Edition

Use Visual Cafe dbDE to create industrial strength Java applications and
connect to multiple databases with the click of a button. It’s intuitive,
powerful and easy to learn.

The Visual Cafe PDE includes all the standard features of Visual Cafe WDE
and PDE, plus these powerful features:

Speed development with visual database tools

Visual Cafe dbDE allows you to produce powerful database applications
instantly. It’s visual database tools, such as the dbAware Project Wizard,
walk you through the entire process of creating a database aware applet or
application. In addition, you can create web forms on top of existing tables
in minutes, display meta-data graphically, generate code automatically and
1-6

What s new in Visual Cafe 2.0
alter it for complex situations and choose from a library of 20 customizable
database templates.

Get open database connectivity

Everything you need to connect to most databases is provided in Visual
Cafe dbDE, including the dbANYWHERE Workgroup Server. The
dbANYWHERE server supports JDBC and provides native support for
Oracle, Informix, Sybase and Microsoft SQL Server databases, and ODBC
support for over 30 databases.

Offer swift, scalable data access—affordably

The dbANYWHERE server’s true three-tier architecture lets thin
applications run on clients, with no client-side drivers required, and
dbANYWHERE’s data caching enables bandwidth flexibility. All clients
need is a Java-enabled browser, so management is a snap and client
software costs are reduced.

What’s new in Visual Cafe 2.0

Contextual Menus

Contextual menus are pop-up menus that show commands that can act on
the object you on.

ZIP archive and JAR (Java ARchive) support

Archives are supported in JDK 1.1 in two types. The .zip file, which was
also supported in Java 1.0, is a basic archive format that only appends
.class files together into one long file. The .JAR format allows compaction,
encryption, and signing. It also extends the archive format by allowing
multiple file types to be included. JAR files allow you to contain such
things as sound and images that you want to be included with your
compiled classes in the archive.

Open by Name

This new feature enables you to search for any .java or .class file. You can
type partial names, and in the case of multiple matches, you can select the
one you want to open.
1-7

Chapter 1: Welcome to Visual Cafe
Version Compatibility

In general, any applet or application that ran in JDK 1.0.2 should run
correctly in Visual Cafe 2.0. Incompatibilities might be found where
functionality has changed between component versions.

Of course, applets that depend on any new JDK 1.1 APIs will not work in
browsers that support only 1.0.2, such as Internet Explorer 3.0, Netscape
3.0, and the alpha and pre-beta1 versions of the HotJava browser.
However, generally, applets relying only on APIs defined in 1.0.2 (but
compiled with the JDK 1.1 compiler) will run on 1.0.2 browsers. This
backwards compatibility has not been extensively tested and cannot be
guaranteed.

Project and environment management

Visual Cafe provides a host of advanced project and environment
management features. The highlights are described below.

Project types

Project types are templates from which new projects are created. Templates
define the Java source and HTML files that the project contains and the
project’s option settings. Additional project types have been included in
Visual Cafe to facilitate native and database-aware development.

Project window

The Project window displays information about the project’s organization
and status. The Project window has been revised in this release to make it
easier to control window presentation.

Event model migration utility

With the Migrate utility, you can migrate your Java files that use the JDK 1.0
event model to the JDK 1.1 event model.

Enhanced macro editing

Visual Cafe lets you define a custom keystroke sequence for many Visual
Cafe editing operations and macros in your projects.
1-8

What s new in Visual Cafe 2.0
Drag-and-drop

Not only does Visual Cafe fully support drag-and-drop, but this feature has
been extending to dragging and dropping JAR files across projects. JAR
files may be added to and removed from a project by dragging files and
folders to and from the Windows Explorer and other open projects.

Display options

You can now customize the display of the Project window using display
options. This display may optionally include icons, debugging, make,
project status, code and data size, file location (full source path),
modification date, source’s translator, immediate group container of source
file, kind of each entry (for example, source file or group), and font and
size. The Project window can be displayed by the group hierarchy or
sorted by any of the displayed categories.

Debugger

The Visual Cafe debugger has some new features as well. In addition to
full JDK 1.1 support, Visual Cafe includes incremental debugging.
Incremental debugging allows you to make changes in your source code as
you fix bugs without recompiling and restarting your program!

Class Browser and Editor

The Class Browser and Editor are designed with object-oriented program
development in mind. The Class Browser and Editor now include support
for JDK keywords.

New and enhanced Wizards

New Wizards have been added as well as enhancing existing ones. The
Interaction Editor now supports JavaBeans. The new Insert Class Wizard
helps you to quickly get custom and 3rd party classes into your Java
programs. You can convert description files (the blueprints of your custom
classes) to JavaBean info and implement your custom components with the
new JDK.
1-9

Chapter 1: Welcome to Visual Cafe
LiveUpdate

LiveUpdate is a feature in many Symantec products that connects you to
the Symantec Update Center and checks to see if their are updates to
Visual Cafe waiting for you. If their are product updates available,
LiveUpdate downloads the latest version and installs it for you so you can
get back to work quickly.

Visual Cafe documentation
Visual Cafe comes with extensive documentation and online help to assist
you in the process of developing in Visual Cafe. These documents are
described below.

Visual Cafe Getting Started and Tour

The Visual Cafe Getting Started Guide consists of installation instructions,
support information, and a tour of the main features of Visual Cafe.

You may want to work through the Tour, which takes less than an hour,
before beginning work in Visual Cafe. The Tour is designed to familiarize
you with the main features of Visual Cafe by guiding you through the
process of building a working Java applet. It requires no previous
experience with Java, is a quick way to learn Visual Cafe -- and it’s fun!

Online Help

Visual Cafe has extensive online help, providing all of the procedures for
building Java applets and applications. To access Visual Cafe’s Help,
choose Help Topics from the Help menu. The online help is also context-
sensitive, which means that you can press F1 in most parts of Visual Cafe
and receive information that is specific to your current activity.

You can also access information about the Visual Cafe components, and
review the Java API documentation from Sun Microsystems. Information on
an individual component is available by typing the name of the component
in the Index tab of Help, by choosing Components Reference from the
Help Contents tab, or from the Component Library by selecting a
component and pressing F1.
1-10

Prerequisites for using Visual Cafe
User’s Guide

This manual may be the document you turn to most frequently as you
work with Visual Cafe. It contains both conceptual information as well as
step-by-step procedures. It contains three parts: Developing in Visual Cafe,
Professional Features, and Database Connectivity.

Part One: Developing in Visual Cafe

Part One introduces Visual Cafe and takes you through the basic process of
creating an application or applet with Visual Cafe. Information in this
section applies to all three Visual Cafe editions, including Visual Cafe WDE.

Part Two: Professional features

Part Two provides a complete reference to the features unique to Visual
Cafe PDE.

Part Three: Database connectivity

Part Three is made up of information specific to Visual Cafe dbDE.

Conventions used in the Visual Cafe User’s Guide

This book uses the following typographic conventions:
■ Names of files, code fragments, resource names, class names, method

names, variables, and information you type appear in code face.
Metanames appear in italic.

■ All numbers are decimal unless otherwise noted. Hexadecimal
numbers are written with the prefix 0x as in 0x3EFA.

■ Keys you press at the same time are shown as follows: Control-Z, Shift-
Control-G. Please note that even though the letter keys are listed in
uppercase, do not hold down the Shift key when executing these key
combinations unless the Shift key is listed as part of the combination.

Prerequisites for using Visual Cafe
This book assumes that you know, or are learning how to program in Java.
If you do not know how to program in Java, you can refer to one of the
many new books that teach Java programming.
1-11

Chapter 1: Welcome to Visual Cafe
System requirements

Visual Cafe’s minimum system requirements are as follows:
■ Intel (compatible) 486 or higher CPU (Pentium 90 and higher

recommended)
■ One of the following operating systems:

■ Windows 95
■ Windows NT Workstation (version 4.0 or higher)
■ Windows NT Server (version 4.0 or higher)

■ 16 megabytes RAM (for Windows 95)
32 megabytes RAM (for Windows NT)

■ 30-100 megabytes free hard disk space
■ CD-ROM drive recommended
■ Color monitor (SVGA recommended)

Internet connectivity

In addition to the above system requirements, it is recommended that you
have Internet and Web accounts with an Internet Service Provider (ISP) in
order to test your Java applets and applications on the Web.

You can also use Visual Cafe over a high-speed Internet connection, such
as Ethernet, that is using TCP/IP protocol.

Starting Visual Cafe
As soon as you launch Visual Cafe, you can begin developing your applet
or application. If you haven’t installed Visual Cafe yet, follow the
instructions in the Getting Started Guide that comes with the Visual Cafe
package.

To start Visual Cafe:

1 Open the Start Menu.
1-12

The Visual Cafe environment
2 Locate the Symantec Visual Cafe entry under Programs.

3 Select Visual Cafe. The Visual Cafe environment is displayed on your
desktop.

4 Locate the Visual Cafe folder on your system.

5 Locate the Visual Cafe program icon and double-click on it.

The Visual Cafe environment
The Visual Cafe environment contains windows, toolbars, and editors that
make developing your Java applet or application easy.

Windows

Visual Cafe windows are the areas on your screen that you use to develop
your programs, including monitoring the status of your projects at any
time. These windows include:

Form Designer – Drag and drop components, as well as arrange them to
this main development area.

Project window – Work with the different parts of your project in this
tabbed window. It’s views include objects, packages, and files.

Property List – Lists and lets you control the properties for your
components. You can resize, name, change visibility, assign values, and
change colors and fonts of your components.

Source Editor – The Source Editor is where you add and customize
source code for your project in any phase of the development cycle.
1-13

Chapter 1: Welcome to Visual Cafe
Breakpoints – Set breakpoints while debugging to validate parameters
and states.

Variables – Use this window to monitor and change variables in your
expressions as you debug your code.

Watch – In the Watch window, you can watch the debugger step through
your code and watch it evaluate selected expressions.

Threads – Allows you to monitor and debug threads in your Java
program.

Call Stack – Provides you a window to watch the debugger step through
functions, methods, and classes.

Messages – Collects all the information from Visual Cafe as it is running or
debugging your project.

Toolbars

Visual Cafe provides an extensive set of toolbars. Toolbars can be docked
in the Visual Cafe window or floated on the screen. Docked toolbars offer
easy access to your favorite components. Hide your toolbars for a clutter-
free design environment if you are more comfortable using menu
commands.

These toolbars are available in the Visual Cafe window:
■ Standard – Contains buttons for working with files, printing, and copy

and pasting.
■ Palette – Contains buttons for adding components to a form.
■ Layout – Contains buttons for arranging the placement of components

on the form.
■ Views – Contains buttons for debugging views.
■ Debug – Contains buttons for debugging actions.
■ Workspace – Selects the debugging or editing workspace mode.

As you change your environment within Visual Cafe, access to other
functions is enabled. For example, when you work in the Class Browser or
Hierarchy Editor, the Classes menu is enabled to assist you in working with
classes.
1-14

How much Java do I need to know to use Visual Cafe?
Visual Cafe windows

From the Views toolbar, you can access these windows:
■ Class Browser
■ Hierarchy Editor
■ Property List
■ Breakpoints
■ Variables
■ Watch
■ Threads
■ Call Stack
■ Messages

Editors

Visual Cafe has three editors for creating and managing Java projects. You
can use these editors to control the development of your projects, such as
editing source code and manipulating classes.
■ Source Editor – a tool for editing source code. For more information

about working with Java source code, see Chapter 4, “Working with
Java Source Code.”

■ Class Browser – a three-pane window that lists all of the classes,
methods and data items contained in your program. For more
information about using the Class Browser, see “Using the Class
Browser” on page 4-1.

■ Hierarchy editor – provides a visual representation of the classes in
your project, and their inheritance relationships. For more information
about using the Hierarchy Editor, see “Navigating the Hierarchy Editor”
on page 4-17.

How much Java do I need to know to use Visual
Cafe?

It is possible to develop Java programs without having to write a single line
of source code. There are many places to obtain Java programs, such as
books, the Internet, and even your friends and colleagues. You can drop
1-15

Chapter 1: Welcome to Visual Cafe
these programs into Visual Cafe and have an applet, application, or
JavaBean ready to use.

However, sometimes these programs need simple to extensive
modifications and this is where real challenges to your programming
expertise occur.

You should have a basic understanding of object-oriented programming,
such as C++. Many of the principle s and concepts of Java are based upon
those found in C++. There are also some vast differences between Java and
C++ that you should know about, as well.

You should also have a basic understanding of cross-platform operating
system concepts. This knowledge is useful, for example, when developing
multi-threaded Java programs because all platforms handle threading
differently.

If you are using the Professional Development Edition, you need to know
basic Microsoft Windows programming and techniques to develop native,
32-bit applications and libraries.

If you are using the Database Development Edition, a basic understanding
of Structured Query Language (SQL) and client-server models is necessary
to build more complex database-aware Java programs.

Finally, a basic understanding of Hypertext Markup Language (HTML) is
helpful to understand and develop the relationship between your Java
applets and Web pages.

It is beyond the scope of Visual Cafe to teach Java programming, although
you can learn more about Java by using Visual Cafe. You can find many
excellent books and tutorials that extensively explore the Java language.
You can also search the Internet with your favorite search engine and find
many well-written Java tutorials and summaries, as well as find abundant
resources to guide you on your way to becoming a Java developer.

You can also participate in special user interest groups, often called a
“SIG”, for your favorite platforms in your local area

What’s next?
This chapter has introduced you to the Visual Cafe integrated debugging
and development environment and the main interface. Before you actually
begin developing your Java applet or application, take a look at Chapter 2,
1-16

What s next?
“Developing in Visual Cafe”, which provides information on basic features
of Visual Cafe and includes an overview of creating an applet and
application. Remember, if you are new to Java development, the Visual
Cafe Tour is a great place to start.
1-17

C H A P T E R 2
Developing in Visual Cafe

Visual Cafe helps you find and fix development problems, reference the
rules of the Java language, automatically create and update source code,
and optimize the entire process of creating Java applets and applications.
Visual Cafe facilitates these tasks by providing an Integrated Development
and Debugging Environment (IDDE). It is possible to design, develop, and
build an applet or application without having to write a single line of
source code. In other words, Visual Cafe tools provide everything you
need to create and develop a Java program.

Putting Visual Cafe to work
When a development environment is said to be integrated, this means that
the tools in the environment work together. For example, the compiler
might find an error in the source code. In addition to displaying the error,
and with a double click on the highlighted error, Visual Cafe opens the
source file in the text editor and jumps to the exact line in the source code
where the error occurred.A large part of applet and application
development involves adding and arranging components on forms, frames,
and applets. Visual Cafe provides tools to make designing forms a simple
process.

After you have started Visual Cafe, you begin creating Java programs using
Visual Cafe’s many powerful tools. These tools include:
■ Toolbar the central control panel for Visual Cafe.
■ Form Editor the primary tool you use to create your programs by

dragging and dropping components.
■ Component Palette the central place where often used components

can be accessed.
2-1

Chapter 2: Developing in Visual Cafe
■ Property List controls the location, behavior, and look of the
components in your program.

■ Component Library the repository for all components, including
your custom ones.

■ Class Browser and Hierarchy Editor allows you to view objects
with a hierarchical display as well as provide access to your source
code.

■ Class Browser allows you to view objects with a hierarchical display
and provide access to your source code.

■ Insert Class Wizard helps you insert the right class in the right place
in your project.

■ Interaction Wizard adds functionality to your components by
creating interactions for them.

Understanding Visual Cafe components

There are three types of components in Visual Cafe: visual objects, non-
visual objects, and containers. A visual component is visible at runtime and
lets users interact with your applet or application; it has a screen position,
a size, and a foreground and background color. Examples of visual
components are forms, applets, and buttons. An invisible component is not
visible at runtime, such as a Timer, or has different display properties, such
as a MenuBar. Some components can contain other components, such as
an application window containing a button; these components are called
containers.

With Visual Cafe, you add visual components to your forms and frames to
assemble applets and applications. Visual components can accept input
from a user and perform specific actions. Visual components can also be
used to display the results of an action. You can use standard graphical
user interface (GUI) techniques for dragging and dropping components
into and among other components. Visual Cafe also has unique drag-and-
drop behavior in the Project and Source windows.

Visual components generally have the following attributes:

A set of properties

Governs how components display and behave. Properties are accessible
from the Property List.

A visual element
2-2

Putting Visual Cafe to work
Defines the appearance of a component at run-time. Shown as an icon in
the Project window, and directly editable by double-clicking and opening
the component.

One or more interactions

The ability to quickly build a relationship between two components is
called an interaction. As you create interactions by connecting
components, Visual Cafe automatically generates code for the relationship,
allowing you to assemble interactive applets and applications without
writing code.

Interactions are not an integral part of all components.

A set of event method(s)

In Visual Cafe, interactions are implemented as methods and imply an
event notification. This Java code is accessible from the Source Window.

Each of these component attributes has its own editor, from the Form
Designer to the Interaction Editor, making it easy to manipulate visual
components. You create cross-platform Java applets and applications by
first designing the user-interface components, and then using the various
Visual Cafe tools to automate the process of deriving classes, creating
interactions, coordinating text messages, and mapping functions to visual
components and messages. You can do most of these tasks by setting
properties to define, refine, and control the appearance and behavior of
your visual components.

Forms hold your Java program together

Forms are containers for components that allow a user to interact with your
program. You use forms when creating applets. You use frames, another
type of form, when creating a stand-alone application.

An example of an application using a frame is the JavaPad application,
included on your Visual Cafe CD. Frames generally include toolbars,
menubars, and other windows.

Visual Cafe provides several tools to help you create forms, including the
Form Designer. Examples of forms are applets, windows, and dialog
boxes.
2-3

Chapter 2: Developing in Visual Cafe
Projects keep your work together

When developing an applet or application in Visual Cafe, you work mainly
with projects. A project is a collection of files that make up your Java
applet or application. You create a project to manage and organize these
files.

When you open a new Visual Cafe project, all the default files required to
begin development are created and included as part of your project. In
addition, project elements may include HTML files, frames, and forms.

When you save your work, Visual Cafe saves the entire project to the
project folder as a .vep file along with all the changes and other files you
may have added to your project.

Using workspaces to customize your work environment

A large number of views are available in the Visual Cafe environment.
Visual Cafe lets you save a configuration of windows as a unique
workspace. A workspace provides a convenient way to switch from one
screen layout view to another.

A workspace is a saved arrangement of windows. Because the various
tools in Visual Cafe are displayed in many individual windows, workspaces
are used to group together the windows that have related functions.
Workspaces provide a means of organizing the multiple windows of the
development environment into logical groups. For example, when you edit
source code you could use a workspace that displays the text editor, the
Messages window, and the Project window. When you are debugging your
program, you could use another workspace that displays windows for the
different debugging tools.

Debugging with Visual Cafe
One of the most powerful tools in the Visual Cafe environment is the
integrated Debugger. The Debugger allows you to watch your programs
execute line by line. As your program executes, you can observe the
various components of the program to see how they are behaving. By
using the Debugger, you can monitor:
■ The values stored in variables
■ Which methods are being called
■ The order in which program events occur
2-4

Overview of creating a Java program
When you first create your project, you specify the type of compiler you
want to use. Visual Cafe provides two compilers: Symantec’s Just-In-Time
compiler and Sun Microsystems’ Java compiler. These two compilers are
detailed in the following sections.

Symantec’s Just-in-time compiler and the Visual Cafe
environment

The Symantec Just-in-time compiler that comes with Visual Cafe was
written specifically for the Java language and is generally faster than Sun’s
command line compiler. Instead of typing a string of commands at the
command prompt, you click on a single icon to compile and execute a
program.

Visual Cafe displays information in the Windows environment instead of at
the DOS command line. Visual Cafe also provides useful, meaningful
messages indicating how the compiling process is progressing.

In addition, Visual Cafe provides many GUI based development tools not
found in the JDK. Visual Cafe’s graphical development environment makes
Java programming easier and faster.

Sun Microsystems’ Java Compiler and JDK

When Sun Microsystems developed Java, they also created a compiler to
convert Java source code into .class files. The Java compiler developed by
Sun is called “javac.exe”, and is run from a DOS command line. To compile
a Java program you need to run javac.exe, passing the name of the source
file, along with any other required parameters.

Sun’s Java compiler also comes with the Java Developers Kit, or JDK. The
JDK is a collection of tools to help compile, debug, and test Java programs.
The JDK, like Sun’s compiler, uses a command line interface.

Overview of creating a Java program
Developing a Visual Cafe applet or application happens in two stages:
designing the program and developing it. In the first stage, you design,
create, and implement the graphic user interface (GUI) of your program.
You also make a very simplistic arrangement of all the components
needed. The second stage is when you bring your project to life by adding
and modifying source code, debugging, re-designing, and testing your
2-5

Chapter 2: Developing in Visual Cafe
project. If you are creating database-aware applets or applications, there
are several additional steps you must do as part of the design stage.

Overview of creating an applet

When you start up Visual Cafe, Visual Cafe creates all the project files
required for a Visual Cafe applet or application, including source files and
the Visual Cafe project file. Visual Cafe then loads these project files, and
you can immediately begin working on your project.

To create an applet:

1 Create a project with an applet template. Visual Cafe provides you with
several templates ready for your use.

See Chapter 3, “Working with projects and workspaces.”

2 Design the user interface by adding forms and components to your
project, customize the component properties, and create component
interactions.

This process is described in detail in Chapter 5, “Including Visual
Components.”

3 If necessary, modify the Java source code.

See Chapter 4, “Working with Java Source Code.”

4 Set project options.

See Chapter 3, “Working with projects and workspaces.”

5 Run the applet in Visual Cafe.

This step is explained further in Chapter 6, “Compiling, running, and
deploying your program.”

6 If needed, debug the applet.

Chapter 8, “Debugging Java Programs”, contains detailed information
on debugging in Visual Cafe.

7 Add the applet to your HTML page. You may also want to Test run the
HTML page on your local machine, then across the intranet or Internet.

See Chapter 6, “Compiling, running, and deploying your program”, for
more details.

8 Deploy the applet.

Deploying is described in Chapter 6, “Compiling, running, and
deploying your program.”
2-6

Overview of creating a Java program
Overview of creating an application

Creating an application in Visual Cafe is very similar to creating an applet.

To create an application:

1 Create a project with an application template. Visual Cafe provides you
with several templates ready for your use.

See Chapter 3, “Working with projects and workspaces.”

2 Follow steps 2 through 4 of creating an applet as explained in the
section above.

These steps are detailed in the same chapters as referenced.

3 Test run the application in Visual Cafe.

Compiling and running a project is explained in Chapter 6,
“Compiling, running, and deploying your program.”

4 If needed, debug the application. You should also test the application
outside of Visual Cafe once its been debugged.

Chapter 8, “Debugging Java Programs”, contains detailed information
on debugging in Visual Cafe.

5 Deploy the application.

Deploying is described in Chapter 6, “Compiling, running, and
deploying your program.”

Overview of creating a dbAWARE applet or application
A database-aware applet or application can be used to store and
retrieve data from Web-based forms.

To create a database-aware applet or application:

1 Start dbANYWHERE.

See Chapter 12, “Developing a dbAWARE project”, for details.

Note: There are several configurations which have to do with the
location of your dbAWARE project, dbANYWHERE, and your
database. Before you start the dbANYWHERE application, it must
be configured to suit your needs. The configuration options are
explained in Chapter 13, “Using dbANYWHERE.”.

2 Create your database by using the tools shipped with Visual Cafe or by
using proprietary database tools.
2-7

Chapter 2: Developing in Visual Cafe
A brief overview of how to do this is provided in Chapter 12,
“Developing a dbAWARE project.”

3 Identify the database you want to use for the project’s data source by
using the ODBC administrator tool or the dbANYWHERE Data Source
tool. These tools are installed along with Visual Cafe and appear on
the Windows Start menu.

See Chapter 12, “Developing a dbAWARE project.” for more
information.

4 Create the dbAWARE project using the dbAWARE Project Wizard.

See “Using the dbAWARE project wizard,” Chapter , for details.

5 If you are creating a dbAWARE applet, follow steps 2 through 8 as
explained in the Overview of Creating an Applet section above.

These steps are detailed in the same chapters as referenced.

6 If you are creating a dbAWARE application, follow steps 2 through 5 as
described in the Overview of Creating an Application section above.

These steps are detailed in the same chapters as referenced.
2-8

C H A P T E R 3
Working with projects and
workspaces

Visual Cafe provides an easy yet sophisticated system to manage the
collection of files that make up a project. A project is the primary
component of Visual Cafe. A workspace is a saved arrangement of
windows. Because the various tools in Visual Cafe are displayed in many
individual windows, workspaces are used to group together the windows
that have related functions. For more information about workspaces, see
“Use Workspaces to customize your work environment” on page 3-55.

What is a project?
A project is a set of files that, when assembled by Visual Cafe, produce an
application or applet. In a typical project, there are source code files, class
files, and documentation files. A single project generally is used to create a
single target.

Note: The application or applet that Visual Cafe builds from a project is
referred to as the project’s target.

A project is the starting point of every Java applet and application created
in Visual Cafe. The Project window shows each item in a project. Visual
Cafe lets you choose among three ways to view your project:
■ a list of objects (and, optionally, HTML files)
■ a list of packages
■ a list of files
3-1

Chapter 3: Working with projects and workspaces
Projects provide vital organization to your programs, particularly as they
grow more complex.

The project file and the project folder

The central element of a project is the project file. The project file contains
all information necessary for management of the project, such as locations
of the project entries, and additional information such as compiler options
and browser data.

Projects speed development by letting you recompile only the source files
that have changed since the last time the project was built. Visual Cafe
manages the project for you by automatically analyzing the dependencies
of the source files and updating the project information each time you
build the project. So, if you make changes to only two files in the project
shown here, and then direct Visual Cafe to build the project, it recompiles
only those two files.

In general, most project entries specific to a project, together with the
project file, are kept in a folder referred to as the project folder. However, a
project’s entries do not all have to reside in the project folder. In addition,
a project may include entries that are located in the project folder of
another project; this permits sharing of code.

An entry is the name of a given component or other object. If you add an
entry to a project, Visual Cafe adds the corresponding file(s) to the project.
A given entry might have a .java file initially, but building generates a
.class file from the .java file. Both the .java and .class files are
associated with the entry.
3-2

What is a project?
When you organize a target’s files in this manner (as a project), Visual Cafe
can assume full management responsibility. In contrast to traditional
“make” systems, this strategy frees you from the bookkeeping involved in
accessing project entries and building the target. Because Visual Cafe keeps
track of all project entries of the project, the features of Visual Cafe are
smoothly integrated. For example, if an error occurs during compilation,
you can click to open a Source window containing the source code with
the questionable line of code highlighted.

Also, Visual Cafe automatically determines those project entries that need
to be rebuilt following changes to any project entry(ies).

Basic concepts of working with a project

Creating an application or applet in Visual Cafe is a multistep process
involving Visual Cafe, the Visual Cafe Debugger, and (for applets only) the
AppletViewer.

Starting a new application or applet with Visual Cafe begins with the
creation of a project.

The names of the files needed to create one or more Java applets,
applications, or related Web pages containing applets are entered in a
Visual Cafe project. For example, a project could include any of the
following elements:
■ an animation applet
■ a word processing application
■ the Web pages and applets that make up an entire Web site.

Before you can construct an applet or application with Visual Cafe, you
need to create a new project, specifying one of the predefined project
templates. Then the Project window opens with the project name in the
title bar. Each Java program created in Visual Cafe must be part of a
project.

By default, each new project is named “Untitled1” until you save it with a
name.

Looking at the Objects view

If you click the Objects tab in the Project window, you see the components
in your project and any HTML files that have been added to the project.
Java components are like C++ controls: they are user interface elements,
3-3

Chapter 3: Working with projects and workspaces
such as windows, menus, buttons, lists, and so on. If the tabs in the
window show icons but no text, open the window wider and the text will
also appear on the tabs.

Some components can contain other components, such as an application
window containing a button. A that contains other components is called a
container. In the Project window, the components in a container appear
subordinate to the container, like a file system display shows files
subordinate to their folders. The containers at the top level are separate
Java files in your project (called Visual Cafe forms), while the components
in the containers are Java code within the container Java file.

All Visual Cafe components are organized in the Visual Cafe Component
Library (also known as the Component Palette).

The Objects view is the view many people use most often during Java
program development with Visual Cafe. With it, you can keep track of the
components your project contains, as well as open a variety of editors. In
addition, one way to add a standard Java component or a Visual Cafe
component to your project is to drag it from the Component Palette to the
Project window. Then an instance of the component class, an object,
appears. See “Viewing the components and HTML files in a project” on
page 3-29, and “Dragging-and-dropping into the Project window” on
page 3-24 for more information.

Project contents

The different types of entries that can be included in a project are source
files, projects, documentation files, and groups. Each type is handled
3-4

What is a project?
differently by Visual Cafe when the target is built and when the entry is
accessed from within Visual Cafe. Visual Cafe uses filename extensions to
identify the various types of entries.

Source files

Visual Cafe can process Java (.java), class (.class), and documentation
source files. The Java and documentation files are text files.

Projects

Visual Cafe also allows you to include other projects in a project. Including
projects lets you group together sets of related entries and access all
included projects’ entries within Visual Cafe. Included projects are built
when the project containing them is built. Thus, you can develop a suite of
applications by having one project for each application and one additional
project that includes all the individual projects; the entire suite of
applications can then be built with one command.

Documentation files

You can add any documentation files to the project to make them readily
accessible during development. These files will neither, however, be
included in the final target nor be involved in any way with building. By
including these files directly in the project, you make them always
available for reference and modification. You can use any application to
create these files as long as they are saved as text files.

Typical files you might want to include are informational files on the
design of your project.

Groups

To better organize entries within your project, Visual Cafe allows you to
create groups. Groups are similar in concept to folders in Windows. By
placing your project entries into groups, you make it easier to locate
individual entries, especially with a large project. Like folders, groups can
be nested. The placement of project entries into groups has no effect on
the final target. Further, the location of an entry in a group has no bearing
on the file’s location on the disk.
3-5

Chapter 3: Working with projects and workspaces
Organizing files and folders

Installing Visual Cafe establishes a specific plan of folder organization. This
plan is set up to allow Visual Cafe to quickly and unambiguously locate
your project’s entries. Specifically, Visual Cafe looks for your project’s
entries in the folders of two paths, the system path and the project path.

The system path

Components that will be used in many projects should be placed in folders
of the system path. In the folder where Visual Cafe is installed (usually the
Visual Cafe for Windows folder), there is a Java Libraries
folder. Within that folder, there is a classes folder. The default system
path is that classes folder along with all its subfolders. You can add
paths to the system path, and you can modify the system path, by using the
Search Paths option from the Project Options window.

The project path

Components that are specific to a particular project belong in its project
path. The project folder, along with all subfolders it contains, is the default
project path. The project folder is the folder that contains the project file.
You can add paths to the project path, and you can modify the project
path, by using the Search Directories option from the Project Options
window.

Typically, a project file resides in a project folder along with all files
specific to the particular project. The folder may also contain subfolders.
Setting up your project’s entries in this way helps reduce the time it takes
Visual Cafe to search for files, and reduces the likelihood of confusion due
to duplicate file names. You can expect to have many project folders.

When you first add a file to a project, Visual Cafe notes the tree (folder
hierarchy) to which the file belongs. Thus, you can move files in and out of
folders and create and rename folders without having to tell Visual Cafe
exactly where the files are located. If you move files later on, Visual Cafe
first looks in this tree.

Looking at the Packages view

A Java package is a group of related classes that can be used by programs
that import that package or any file in that package. It is similar to a C
3-6

What is a project?
library. The Packages view always shows the standard Java packages that
Java programs require.

When components are added to a project, a Default Package, containing
the .java files for those objects, appears. If you add a Visual Cafe
component, the Symantec package also displays in the Package view; it
contains the Java source file for each Visual Cafe component you include
(specifically, it contains the source code for the component class that your
project object is based on).

You can also make other packages available to Visual Cafe projects by
adding them to the Visual Cafe class path. Then if you add an import
statement or use part of the package in your Java source code, the package
appears in the Packages view. See “Adding packages to Visual Cafe” on
page 3-34.

Usually, only advanced Java programmers are interested in this view. See
“Viewing the packages in a project” on page 3-33 for more information.
3-7

Chapter 3: Working with projects and workspaces
Looking at the Files view

The Files view lists all of the files contained in your project. At the top level
are the files for the top-level components in your project, as well as any
HTML files you may have added to the project.

In the Imports folder are all of the Java source files for the packages your
project uses. Whereas in the Packages view the files are listed by package,
in the Imports folder the files are listed alphabetically.

As with the Packages view, usually only advanced Java programmers are
interested in the Files view. See “Viewing the files in a project” on page 3-
26 for more information.

Creating projects by using templates
This section describes the use of project types, and the templates that are
contained in each, when creating a project. It discusses the different project
types and how to create projects based upon them.

This section assumes you’ve already correctly installed Visual Cafe. Before
working with Visual Cafe, you should create a common folder to contain
your specific project folders. You can name this common folder anything
you like, such as My Projects , and you can place it anywhere you like
as long as it is outside of the system path (see the previous section for
more information).
3-8

Creating projects by using templates
Choosing the project template

When creating a new project, you must select a project template for it.
Project templates determine those project entries that are to be initially
added to a project and those configuration options that are to be initially
provided. Using project templates reduces the amount of overhead
involved with creating projects. You can also create your own project
types, as described in “Creating a project template and adding it to the
library” section in this chapter.

The following components are in the standard Visual Cafe project
templates:
■ Empty Project – No objects.
■ Basic Java Bean – This template contains all the basic files you need to

get started in building JavaBeans and deploying them.
■ Basic Application – A Frame, AboutDialog, and QuitDialog

component. The Frame container is a special kind of window; this one
has been set up as a main application window. In this template, it
contains a menu bar and an Open File dialog box, which is a standard
Java component. The About and Quit dialog boxes are Visual Cafe
components that you can customize like templates; they are tied to the
About and Exit menu items.

■ Basic Applet – An Applet component. The Applet container is a type of
Panel component that is designed to appear in an HTML file (such as a
Web page) viewed in a Web browser (such as Netscape Navigator).

Professional Development Edition

The Visual Cafe Professional Development Edition adds two more
component templates:
3-9

Chapter 3: Working with projects and workspaces
■ Basic Win32 Dynamic Link Library – This template specifies that the
program is a native DLL.

■ Basic Win32 GUI Application – This template specifies that the
program is a native, stand-alone executable.

■ Basic Win32 Console Application – Has no GUI features uses console.

Database Development Edition

The Visual Cafe Database Development Edition adds two more component
templates beyond those of the Professional Development Edition:
■ dbAWARE Template Wizard – This template supplies everything you

need to select or build a table in a specified data source.
■ dbAWARE Project Wizard – This wizard guides you step by step in

creating a project framework for developing Java projects that use
database connectivity.

You can also create your own project templates. See “Creating projects by
using templates” on page 3-8 for more information.

Constructing a logically arranged project folder

The first time you save a project, the files it contains are stored in the folder
you specify. For efficient project management, you should store all the files
of a given project in a separate folder dedicated to that project. This folder
3-10

Creating projects by using templates
is called the project folder. Doing so will make deploying your applets,
applications, and Web pages much easier.

The Java and Symantec packages are automatically available during
development with Visual Cafe. These files are not added to your project
when you save it the first time; there are a number of ways you can make
imports from these packages available to your applets and applications
during deployment.

If your project has a lot of files, you can group the files in folders
subordinate to the project folder. For example, if your project has many
graphics files, you could store these files in a separate folder subordinate to
the project folder. Remember that when you create your Java programs and
HTML files, you specify where they should look for certain files, such as
graphics files. So whenever you move files in the project folder, you must
be aware of any dependencies that your Java programs and HTML files
have on file locations.

For more information on deployment, for more details, see “Deploying
Java programs” on page 6-7.
3-11

Chapter 3: Working with projects and workspaces
Looking at the files in the project folder

Visual Cafe creates several files that contain information about your project
and stores them in the project folder:

These files are not needed for deployment. The name of the .vep file
appears in the title bar of the Project window; the rest of the project files
do not appear in the Project window.

Note: In Visual Cafe 1.0, you opened a project by opening the .vpj file.
In Visual Cafe 2.0, you open a project by opening the .vep file.

Visual Cafe can also create these files and store them in the project folder:

Double-clicking a .java or .html file in the Project window opens that
file in a Visual Cafe editor. For deploying applications, you need the
compiled version of your Java files (the .class files). For deploying
applets, you need both the .class files and any HTML files you want to
use for your Web pages. In addition, you also need your graphics files.

The Java source files (.java) and compiled Java files (.class) have the
same file names, but different extensions. You see only the .java files in
the Project window, because they are used for development, while
.class files are used for deployment.

Extension Description

.vpj The Visual Cafe project

.vep Visual Cafe project options and file list

.ve2 Secondary project information

.cdb Compiled database that Visual Cafe uses to track compilation
dependencies (created after compilation)

Extension Description

.java A Java source file, such as for an applet

.class A compiled version of a Java source file

.html An HTML file
3-12

Creating projects by using templates
Adding files to a project

You can add .html , .java , and .vep project files to a project. If you
have Visual Cafe Professional Development edition, you can add DLLs as
well.

The only way an HTML file will appear in the Project window is if you
manually add it. You can add HTML files to the project as a helpful
organizational tool, but it is not required.

You can also add Java source (.java) files. For example, if you wanted to
import a Java source file for an applet that you created in a product other
than Visual Cafe, you could place the file in a project folder, then add the
.java file to the Project window. Visual Cafe will attempt to translate the
file into its visual environment.

If you add the project (.vep) file of a project to the current, open project,
the added project becomes a subproject of the open project it resides in.

You can add ZIP files and DLLs to a project and, from your Java code,
import any packages or class files it contains. Note that packages in a ZIP
file or DLL do not appear in the Packages view of the Project window.

Remember that you should store all the files of a given project in a separate
folder dedicated to that project. Doing so will make deploying your
applets, applications, and Web pages much easier. See “Working with
components in a project” on page 3-29 for more information.

Although Visual Cafe automatically creates many Java source files for you
in its visual environment, in some cases you may want to add .java files
directly. For example, if you wanted to import a Java source file for an
applet that you created in a product other than Visual Cafe, you could
place the file in a project folder, then add the .java file to the Project
window. Visual Cafe will attempt to translate the file into its visual
environment.

For more information, see “Adding an existing file to a project” on page 3-
27 and “Adding a new file to a project” on page 3-26.

To add files to the Visual Cafe environment:

1 From the Insert menu, choose Files Into Project.

The Project Files dialog box appears.

2 Select the file(s) that you want to add.

3 Click Add or Add All, as appropriate.
3-13

Chapter 3: Working with projects and workspaces
4 Click OK.

The file(s) appear in the Project window.

To add files from the Windows Explorer or other file system window:

Drag Java or HTML files from the Explorer into the Project window.

Working on multiple projects

You can open multiple projects simultaneously; they are displayed in
separate Project windows. This feature helps you to easily navigate
between projects.

Sharing files across multiple projects

For efficient project management, you should store all the files of a given
project in a separate folder dedicated to that project. Doing so will make
deploying your applets, applications, and Web pages much easier.

You can reuse a file if it does not contain code that was automatically
generated by Visual Cafe. Just add the file to the open project. For more
information, see “Adding an existing file to a project” on page 3-27.

Any file that does contain code that was automatically generated by Visual
Cafe should not be shared between multiple projects. The file can change
in one project, causing version problems in any other projects it belongs
to. Instead, you have a number of options. For example, you can copy the
file into the new project folder and add it to the project, create a new
project template tailored to your requirements, add your own custom
components to the Component Library, cut and paste Java code, and so on.
For more information, see “Copying a file of a project” on page 3-28 and
“Creating a project template and adding it to the library” on page 3-54.

Note: File names are relative to the current project. For example, if you
add a file called foo.java and it resides in a subfolder (called foo1) of
the project folder, the file name is stored as foo1\foo.java and is not
fully qualified. If foo1 was a folder at the same level as the project folder,
the file would be stored as ..\foo1\foo.java .
3-14

Beginning to work with a project
Compiling projects

Projects speed development by compiling only the source files that have
changed since the last time the project was built. Visual Cafe manages the
project for you by automatically analyzing the dependencies of the source
files and updating the project information each time you build the project.

Defining project options

You can customize your project by setting project options such as the
project release type, runtime arguments, compiler settings, and search
folders. See “Setting compiler options for a project” on page 3-45.

Beginning to work with a project
You can create an entirely new project, open an existing project, or derive
a new project from an existing one by saving or renaming or copying. If
you want to work on an existing project that was created under release 1.0,
you must migrate it to release 2.0 first.

Creating a new project

The files needed to create one or more Java applets, applications, or
related Web pages containing applets are stored in a Visual Cafe project. A
project also helps you manage and organize your files as you develop your
Java programs.

To create a new project:

1 From the File menu, choose New Project.

The New Project dialog box appears.

2 Select the project template you want as the base for the new project.

The default template is indicated by an asterisk. You can easily change
the default template by selecting a template and clicking Set Default.

3 Click OK.

A new Project window opens with the selected template loaded. All
objects in the template are added to the project. Only one project
appears in a Project window.

4 To save the project, from the File menu, choose Save As.

The Save As dialog box appears.
3-15

Chapter 3: Working with projects and workspaces
The project and all of the files contained within it should be in the
same folder. For easier project management, you should save each
project in its own folder.

5 Select a folder and type the project name in the File name field, then
click Save.

The Visual Cafe project file must have the extension .vep . If you type
just the first part of the file name, Visual Cafe will add the .vep
extension for you.

Note: The first time you save a project, all of the files it contains are saved
to the folder you specify. After you save a project once, saving just the
project does not save other files, such as applets. From the File menu,
choose Save All to save all files in a project.

Opening an existing project

To open an existing project from within Visual Cafe:

1 From the File menu, choose Open.

The Open dialog box appears.

2 Navigate to the project folder.

3 Make sure Visual Cafe Project is shown in the Files of type field.

The projects display.

4 Select a project from the list.

5 Click Open.

The project opens with the last saved window configuration.

To open an existing project from the Windows Explorer or other file
system window:

Double-click the project file, which has the extension .vep .

Note: In Visual Cafe 1.0, you opened a project by opening the .vpj file.
In Visual Cafe 2.0, you do so by opening the .vep file.
3-16

Beginning to work with a project
Saving, renaming, and copying a project

The first time you save a project, all of the files it contains are saved to the
folder you specify. After you save a project once, saving just the project
saves the project files only, not other files, such as applets. From the File
menu, choose Save All to save all files within a project.

For efficient project management, you should store all the files of a given
project in a separate folder dedicated to that project. Doing so will make
deploying your applets, applications, and Web pages much easier. If your
project has a lot of files, you can group the files in folders subordinate to
the project folder.

Adding files to and removing files from projects

The project file contains various project entries that are added by default
when the project is created. The specific project type that you choose
determines the default entries that are added to the project file.

To add new project entries to a project file:

1 From the Insert menu, choose Files into Project.

The Insert Files dialog box appears.
3-17

Chapter 3: Working with projects and workspaces
You use the Insert Files dialog box to add any types of files to your
project. Note that only those files that have not previously been added
to the project are listed in the upper scrolling list.

2 Choose either Net Files (*.java ,*.html) or All Files (*.*) from the
Files of Type pop-up menu.

If Net Files is chosen, only files in the project that have the specified
extensions are displayed in the upper scrolling list. If All Files is
chosen, all files are listed.

3 Navigate to the appropriate folder and either double-click the name of
the file in the upper scrolling list or select the name and click Add.

4 The name of the file is added to the lower scrolling list.

5 Repeat step 3 for each additional file you want to add to the project.

6 When you have specified all the files you want to add to the project,
click OK.

The files are added to the project and their names are displayed in the
Project window.

To save a new project

1 Activate the Project window, then from the File menu, choose Save As.
The Save As dialog box appears.

2 Select a folder and type the Save As field

3 The Visual Cafe project file must have the extension .vep . If you type
just the first part of the file name, Visual Cafe will add the .vep
extension for you.

4 Click Save. The new file name appears in the title bar.

To remove project files:

Choose Remove “filename” from the Project menu, where filename is
the name of the selected project entry. You can select multiple project
entries in the Project window, in which case the menu item is titled
Remove Selected Items.

The project entries are removed from the project and their names are
removed from the Project window.

To remove project entries using drag and drop, drag the entries from the
Project window to the Trash. This only removes the entries from the
project; it does not delete the files.
3-18

Beginning to work with a project
Creating groups

A group has the same relation to Visual Cafe as a folder has to the
Windows Explorer: it represents a collection of related files. Like folders,
groups can be nested. Groups are added to the Component Library.

As you add project entries to a project, you should create new groups to
help keep these entries organized and help you locate individual entries.

To create a new group:

1 Choose Window, then Component Library from the Visual Cafe file
menu.

2 Choose Group from the Insert menu to add a new group to your
project.

3 A new folder appears in the Component Library.

4 Enter the name of the new group and click OK.

The new group is displayed in the Component Library.

Saving only the project file

To save only the project and not its files:

Activate the Project window, then from the File menu, choose Save.

Only the project file is saved, not files in a project, such as applets.

If you are adding a file or set of files to the group using the Files into
Project command in the Insert menu, be sure the group is first highlighted
in the Project window.
3-19

Chapter 3: Working with projects and workspaces
To display the contents of a group, click the positive sign located to the left
of the group name.

To hide the contents of a group, click the negative sign.

It is also possible to create groups by dragging folders to the Project
window. Entire group hierarchies can be added in this process. All the files
within a folder are added to the group corresponding to the folder in
which they are located. Note that the same rules of filtering apply as when
dragging and dropping individual files.

To add a hierarchy of folders and files, drag the folder icon containing the
hierarchy from the Windows Explorer to the Project window.

The folder hierarchy is used only as a template for establishing groups and
the locations of project entries within these groups. Project entry files can
be located anywhere in the project tree, regardless of the group in which
the entry resides.

Working with multiple projects

Visual Cafe allows you to have multiple projects open at the same time.
One of the currently open projects is designated as the main project. When
only one project is open, it is automatically designated as the main project.
You can specify the project that should be the main project using the
Switch Main Project submenu in the Project menu. The main project’s
name is listed with a checkmark. To designate a project as the main
project, choose its name from the Switch Main Project submenu. If the
project you choose is not open, it is opened automatically.
3-20

Beginning to work with a project
When working with several projects at the same time, it is important to
know the project that will be affected by project-related commands you
might choose. Visual Cafe applies the following rules to determine the
project that will be affected:

1 If the frontmost window is a Project window, the command affects the
project to which the window belongs.

2 If the frontmost window is not a Project window, the command affects
the main project.

Viewing active projects

The active project has its name in the Visual Cafe title bar. The Class
Browser is also project-dependent. If you have a Class Browser open for
each open project, you can identify which project is active by looking at
the Visual Cafe title bar for each Class Browser window you select.

This feature is helpful when viewing .java files. For example, if you open
two or more .java files that are in two or more different projects, look at
the Visual Cafe title bar to see which project is associated with them. Being
able to tell which .java file belongs to which project is helpful when
debugging, for example, because when you set breakpoints, they are
associated with that project.

To save all the files of a project:

Activate the Project window, then from the File menu, choose Save All.

project files and all files in the project are saved.

To save one file of a project:

After you save a project once, you can save a file within the project
separately from other files.

1 Open the file in an editor and activate that window.

Remember that a top-level container in the Objects view is associated
with a Java source file.

2 From the File menu, choose Save.

The Save menu item is enabled only if there are changes to save.

To save and rename a project:

1 Activate the Project window, then from the File menu, choose Save As.

The Save As dialog box appears.
3-21

Chapter 3: Working with projects and workspaces
2 Type the project name in the File name field, then click Save.

The Visual Cafe project file must have the extension .vep . If you type
just the first part of the file name, Visual Cafe will add the .vep
extension for you.

Note: In Visual Cafe 1.0, you opened a project by opening the
.vpj file. In Visual Cafe 2.0, you open a project by opening the
.vep file.

3 Using operating system tools, delete from the project folder the project
files that have the old name and the extensions .vep , .vpj , .ve2 ,
and .cdb (if present).

To copy a project:

1 If Visual Cafe is running, make sure that the Project window for the
project is closed.

You cannot copy files while they are in use.

2 In Windows, copy the files in the project and paste them in a new
folder, preserving the folder structure.

3 Drag the files and drop them where you want to copy them.

4 If all of your files are in one project folder, you could just copy the
project folder, then rename it.

To delete a project:

1 If Visual Cafe is running, make sure that the Project window for the
project is closed.

You cannot delete files while they are in use.

2 From the Windows operating system, delete the project folder and all
files in the project (except for imports).

Migration from Visual Cafe 1.0 to Visual Cafe 2.0

There are two aspects to migrating from Visual Cafe 1.0 to 2.0: migrating
the project, and migrating to the new event model.

Migrating a project from version 1.0 to 2.0

In Visual Cafe 1.0, you opened a project by opening the .vpj file. In
Visual Cafe 2.0, you open a project by opening the .vep file.
3-22

Beginning to work with a project
Visual Cafe 2.0 project files (the .vep , .vpj , .ve2 , and .cdb files) are
not backward-compatible with Visual Cafe 1.0 project files. If you save a
1.0 project in the 2.0 software, you cannot convert the project back to 1.0.
So you might want to save your 1.0 projects under a different name in the
same folder. That way you will still have your 1.0 project files.

If you create an applet using JDK 1.1, the Web browser must support this
version of the JDK or the applet will not run in the browser.

Migrating Java source files from the JDK 1.0 to the JDK 1.1
event model

Visual Cafe offers a utility that automatically converts a Java source file
from the JDK 1.0 event model to the JDK 1.1 event model.

To migrate a project file:

1 Open the file in the Source window.

2 From the Project menu, choose Migrate.

Visual Cafe parses the handleEvent and action methods. From
these methods, new code is generated to handle the events in the JDK
1.1 event model. This includes generating the required listeners and
adapters, and registering the listeners. For menus with menuItems
created as quoted literals, such as menu1.add("Open") , a MenuItem
object is created to support the new event model.

3 Look over your code and make modifications as needed. For example,
you might have code that you need to move from the handleEvent
and action methods.

Closing a project

When a project closes, all windows associated with the project close
(except the Property List, which clears). If any Build Error, Search Results,
or Class Browser windows are open for that project, they are closed along
with the Project window.

To close the active project:

From the File menu, choose Close while the Project window is active.

You are prompted to save any unsaved changes. Visual Cafe remains
open so you can work on other projects.
3-23

Chapter 3: Working with projects and workspaces
To close all projects and exit Visual Cafe:

From the File menu, choose Exit.

You are prompted to save any unsaved changes. The project and Visual
Cafe windows close.

If any Message, Search Results, or Class Browser windows are open for that
project, they are closed along with the Project window.

Using the Project window
This section describes how you control project behavior, such as setting
options for building and running an applet, for configuring Java
applications and applets, libraries, for compiling, and for project display.

The Project window helps you to quickly edit the items in a project. To
access other editor windows from the Project window:

■ Components and menus are displayed in the Objects view.
■ Java files are displayed in the Packages and Files view.
■ HTML files are displayed in the Objects and Files view.

Dragging-and-dropping into the Project window

You can use standard graphical user interface (GUI) techniques for
dragging and dropping components and files into the Objects view of the
Project window.

When copying or moving components, if a box appears over a container in
the Project window, the component is inserted within the container. If a
line appears under a component, the new component appears after the
component that is underlined. A + appears over the cursor when a copy
operation is being performed.

Double-click… To get this editor…

component Form Designer

menu Menu Designer

Java or HTML file Source window
3-24

Using the Project window
Containers are placed at the top level or in another container, depending
on where you drag the component or on the characteristics of the
component. Containers at the top level mean a new .java file is added to
your project; components added to a container mean that code is
generated in the .java file for the top-level container.

Visual Cafe does not allow inappropriate copies and moves, such as
dropping a component into a container when that component must be at
the top level.

Drag from… Into… Result…

Component
Library or Palette

Project window Copies the component to the new
project (in other words, instantiates
the component).

Project window Same Project window Moves the location of the item. Or
press CONTROL and drag an item
to copy it. For example, you can
move a component to another
container or copy a component
within the same container. You can
also reorder the components in the
Project window list, which affects
how components overlap on a
form (the z-order), the tab order,
and the order they are declared in
the Java code.

Project window Different Project window Copies the file or component to the
new project.

Form Designer Project window Within the same project, moves the
location of the component; or press
CONTROL and drag to copy a
component.When dragging to a
different project, copies the
component.

Menu Designer Project window Within the same project, moves the
location of the menu item; or press
CONTROL and drag to copy a
menu item.When dragging to a
different project, copies the menu
item.
3-25

Chapter 3: Working with projects and workspaces
Viewing the files in a project

The Files view lists all of the files contained in your project. At the top level
are the files for the components in your project, as well as any HTML files
you may have added to the project.

In the Imports folder are all of the Java source files for the packages your
project uses. Whereas in the Packages view the files are listed by package
(see “Viewing the packages in a project” on page 3-33), in the Imports
folder the files are listed alphabetically.

HTML files are also listed in the Objects view (see “Viewing the
components and HTML files in a project” on page 3-29).

Looking at the Files view
Click the Files tab in the Project window.

Adding a new file to a project

Visual Cafe lets you create a new text file from within its environment. You
can add HTML code to create HTML files and Java code to create Java
source code files; you can add these files to your project.

To add a new file to a project:

1 From the File menu, choose New File.

An empty Source window opens.

2 From the File menu, choose Save As.

3 In the Save As dialog box, type the file name (including the
appropriate extension) and select the Add to Project option.

4 Click Save.

The file name appears in the title bar.

5 In the Source window, add appropriate code or text.

Windows
Explorer or
other file system
window

Project window Adds the file to the project.
(However, it does not copy the file
to the project folder.)

Drag from… Into… Result…
3-26

Using the Project window
Adding an existing file to a project

The only way an HTML file will appear in the Project window is if you
manually add it. You can add HTML files to the project as a helpful
organizational tool, but it is not required. Adding HTML files to your
project allows you to see how your Java applet works.

You can also add Java source files (with the extension .java). For
example, if you wanted to import a Java source file for an applet that you
created in a product other than Visual Cafe, you could place the file in a
project folder, then add the .java file to the Project window. Visual Cafe
will attempt to translate the file into its visual environment.

Remember that you should store all the files of a given project in a separate
folder dedicated to that project. Doing so will make deploying your
applets, applications, and Web pages much easier. You should also avoid
sharing files between projects.

Note: File names are relative to the current project. For example, if you
add a file called foo.java and it resides in a subfolder (called foo1) of
the project folder, the file name is stored as foo1\foo.java and is not
fully qualified. If foo1 was a folder at the same level as the project folder,
the file would be stored as ..\foo1\foo.java .

To add files from the Visual Cafe environment:

1 From the Insert menu, choose Files into Project.

The Project Files dialog box appears.

2 Select the file(s) that you want to add.

3 Click Add or Add All, as appropriate.

4 Click OK.

The file(s) appear in the Project window.

To add files from the Windows Explorer or other file system window:

Drag Java or HTML files from the Explorer into the Project window.

Deleting a file from a project

As you are developing your project, you can delete HTML and Java source
files as needed.
3-27

Chapter 3: Working with projects and workspaces
To remove a file by pressing Delete:

In the Files view of the Project window, select a file and press DELETE.

To remove files by using the Project Files dialog box:

1 Make the Project window active.

2 In the Packages or Files view, right-click the window to display the
pop-up menu, then choose Insert/Remove Files.

Or while any view is displayed, from the Insert menu, choose Files
into Project.

3 In the Project Files dialog box, select one or more files from the list at
the bottom pane of the dialog box.

4 Click Remove.

5 Click OK.

Notes:

When you remove a Java source file from a project, all associated
visual elements that are created in the Java code are also removed.

Deleting a file from a project does not delete it from the project
folder. You must manually delete it.

You cannot remove imported files.

Copying a file of a project

You can copy and paste a file from one project to another, or within the
same project. The file is duplicated and placed in the target project folder.

To copy a file of a project:

1 Open the project(s) you want to use and click the Packages or Files
tab.

2 In the Project window, select the file that you want to copy.

3 From the Edit menu, choose Copy (or click the toolbar Copy button).

4 Activate the Project window that you are moving the file to.

5 From the Edit menu, choose Paste (or click the toolbar Paste button).
3-28

Working with components in a project
The file appears in the Project window. If you are pasting into the same
project that you copied the file from, the file is renamed to prevent file
name conflicts.

Working with components in a project
Following are some tasks you can perform with components in a project:
■ Viewing components and HTML files
■ Adding a component
■ Copying a component
■ Renaming a component
■ Deleting a component

This section explains how to perform each of these tasks.

Viewing the components and HTML files in a project

The Objects view of the Project window shows the components in your
project and, if they were added to the project, the HTML files. The
components in a container appear subordinate to the container, like a file
system display. The containers at the top level are separate Java files in
your project, while the components in the containers are Java code within
the container Java file. The Objects view is the view many people use most
often during Java program development with Visual Cafe.
3-29

Chapter 3: Working with projects and workspaces
To look at the Objects view:

Click the Objects tab in the Project window.

Adding a component

Visual Cafe provides several ways to add components to your project.
When components are added directly to a form in the Form Designer, they
are also added to the associated project.

You can drag a component from the following areas into the Project
window, Form Designer, or Menu Designer:
■ the Component Palette or Component Library
■ a Project window or Form Designer of the same project (press

CONTROL and drag to copy the component)
■ a Project window or Form Designer of a different project

Note: When you copy a component within the same or a different project,
only component code that is automatically generated by Visual Cafe is
copied. This does not include custom code and interactions.

To add a component by using an Insert menu item:

1 While the Project window or Form Designer is active, choose a menu
item from the Insert menu to add components to your project.

2 Right-click the Project window and choose an Insert menu item.

The component is added to the container that is currently selected in the
Project window.

Note: If the parse fails, you can see a file in the Packages and Files view,
but not see an object in the Objects view of the Project window. You
probably need to correct the Java code to get the file to parse. See “Adding
code to a Java source file” on page 4-23 for more information.

Copying a component

You can copy and paste a component listed in the Objects view from one
project to another, or within the same project:
■ If you copy and paste a top-level container, the corresponding Java file

is duplicated and placed in the target project folder.
3-30

Working with components in a project
■ If you copy and paste a component in a container, the Java code of
that component is placed in the Java file of the top-level container.
Only component code that is automatically generated by Visual Cafe is
placed in the Java file. This does not include custom code and
interactions.

Visual Cafe allows only appropriate copies; for example, a component that
is not a container cannot be copied to the top level.

To copy and paste a component:

1 Open the project(s) you want to use.

2 Click the Objects tab in the Project window, then select the component
that you want to copy.

3 From the Edit menu, choose Copy (or click the toolbar Copy button).

4 Click the Objects tab in the Project window that you are moving the
component to.

5 If you want to paste the component within another container, select
that container.

6 While the target Project window is active, from the Edit menu, choose
Paste (or click the toolbar Paste button).

The component appears in the Project window. If needed, the
component is renamed to prevent name conflicts.

To copy and drag a component:
■ Within the same project, press CONTROL and drag the component to

the location you want it.
■ To a different project, drag the component to the location you want it.

Renaming a component

You can rename the components listed in the Objects view of a project. If
you rename a top-level container, the corresponding Java file name
changes. If you rename a component in a container, the Java code of the
top-level container changes for that component. Visual Cafe changes the
name in the entire Java source file, even in custom code.

To rename a component from the Project window:

Click the Objects tab in the Project window, select the component
name, press TAB, and retype the name in the edit frame. Press ENTER
or click somewhere else when you are finished.
3-31

Chapter 3: Working with projects and workspaces
or

Click the Objects tab in the Project window, slow double-click the
component name and type the new name in the edit frame. Press
ENTER or click somewhere else when you are finished.

To rename a component from the Property List:

Make your project active, then change the Name property of the
component in the Property List.

Deleting a component

If you delete a top-level container in the Objects view of the Project
window, the corresponding java file is deleted from the project and the
other views. The file is not deleted from the folder on your hard disk.

Note: If you want to delete a file, you should first delete it from the project
then delete it using Windows operating system commands. Do not delete a
file using operating system commands before first deleting it from the
project.

If you delete a component within a container, the code automatically
generated by Visual Cafe is deleted. You must manually delete any custom
code or interactions. Similarly, if you delete a component’s code from a
Java file, the component is removed from the Project window after you
click out of the Source window or save the Java file.

Note: To avoid deleting the wrong code or not all of the code, it is
recommended that you delete components from the Project window
instead of from the source code. Then delete from the source code any
custom code or interactions.

To delete a component:

1 Click the Objects tab in the Project window.

2 Select the component and press the DELETE key.

If you delete a component from a container, you must manually delete
any custom code or interactions involving that component.

If the component is a top-level container, the corresponding Java file is
not deleted from the folder on hard disk. You must manually delete it.
3-32

Working with packages
Working with packages
The following are actions you can perform as you work with packages:
■ Viewing the packages in a project
■ Adding packages to Visual Cafe

Viewing the packages in a project

The Packages view lists the Java source files, grouped as Java packages, in
your project. The Packages view always shows the standard Java packages
that Java programs require. When components are added to a project, a
Default Package, containing the java files for those objects, appears. If you
add a Visual Cafe component, the Symantec package also appears in the
Package view; it contains the Java source file for each Visual Cafe
component you include.

You can also make other packages available to Visual Cafe projects by
adding them to the Visual Cafe class path. See “Adding packages to Visual
Cafe” on page 3-34.

Usually, only advanced Java programmers are interested in the Packages
view.

To see the Packages view:

Click the Packages tab in the Project window.

You can expand and collapse your view of a package like you would for a
hierarchy of folders and files in the Windows file system.
3-33

Chapter 3: Working with projects and workspaces
Note: Classes that have not been added to a package display under the
Default Package. Only source files that have been added to the project are
listed.

Adding packages to Visual Cafe

The standard Java packages and the Symantec Visual Cafe packages are
available to you as you create Java programs in the Visual Cafe
environment. You can also make other packages available to Visual Cafe
projects by adding them to the Visual Cafe class path. For example, you
could add third-party or your own packages containing components or
utilities. You can set the class path for a project or for the Visual Cafe
environment. See “Specifying file search paths and the output folder” on
page 3-47 for more information.

Remember to keep the folder structure of your package intact, and make
sure that your file names use the same uppercase and lowercase letters,
exactly as they were before copying the package.

If you add a Java import statement or use part of the new package in
your Java source code, the package appears in the Packages view.

Setting project-level options
The most complex command in the Project menu is Options. Choosing this
command opens a multipage dialog box. In the Project Options dialog box,
Visual Cafe lets you perform the following tasks to set options.

To set options that apply to a single project:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

To set environment options:

For information about setting environment options, “Setting environment
options” on page 9-1.
3-34

Setting project-level options
Project Options

This command opens the Project Options dialog box in which you
configure the options settings for the selected project. Options are project
specific, unlike the preferences you set using the Environment Options
dialog box. Options settings remain bound to a project even when you
close and later reopen the project. They control general project behavior,
including build and run settings. The preferences in the Project Preferences
dialog box affect all projects.

The Project Options dialog box has the following options tabs:

Project
■ Specifying whether builds are debug or final
■ Setting the project type to applet or application
■ Specifying what applets to run and the HTML file
■ Making applets run in the Applet Viewer or a browser
■ Specifying the main class to run for an application
■ Specifying arguments for application execution
3-35

Chapter 3: Working with projects and workspaces
■ Specifying whether to clear messages before builds
■ Specifying whether to parse imports

Compiler
■ Specifying Java optimizations
■ Generating Debug information
■ Specifying Sun’s Java compiler instead of Symantec’s
3-36

Setting project-level options
■ Setting messages options

Directories
■ Specifying file search paths and the output folder (directory) for class,

output, source, and library files, as well as managing folders.
3-37

Chapter 3: Working with projects and workspaces
Version Control
■ Provides a means of working with an existing version control system in

your development environment

Debugger
■ Setting Debugging options for exceptions in a project
■ Remote Debugging options

Each options page is represented by a tab at the top of the dialog box. By
default, when the Project Options dialog box appears, it displays the
Project options page. Clicking a tab selects the corresponding page. You
can move freely between options pages as you configure options. You can
move around the options on each page by using the tab key. You can
change tabs by using the right and left arrow keys.

Each options page contains Cancel and Save buttons. Cancel performs its
standard Windows operation. Clicking Save saves the options settings for
the current editing session; these options settings are then available for
selection–for example, in another editing session or from the Project
window.
3-38

Setting project-level options
Other common elements on all options pages include the Help area and
the Options pop-up menu.

Specifying whether builds are debug or final

Visual Cafe has Debug and Final project option sets that let you specify
how you want to compile your Java code. By default, for Debug the
compiler includes debug information, while for Final no debug information
is included and Java optimizations for speed and compactness are
performed. Debug information enables you to use all Visual Cafe debug
features when you debug your Java programs, but makes the compiled
code larger.

In the Project Options dialog box, the Compiler and folders tabs show the
release type option sets. For more information on the options, see “Setting
compiler options for a project” on page 3-45 and “Specifying file search
paths and the output folder” on page 3-47.

To set the release type:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select one of the following options:

You can change the default, as described in the next procedure.

5 Click OK.

The change takes effect the next time you compile your Java program.

To change a release type option set:

1 From the Project Options dialog box, set the release type to Debug or
Final.

2 Click the Compiler and Directories tabs and set the options for that
release type.

Select… To do this…

Debug By default, build an executable that contains debugging
information.

Final By default, build a more compact executable that is
optimized and contains no debugging information.
3-39

Chapter 3: Working with projects and workspaces
3 Click OK.

The change takes effect the next time you compile your Java program.

Project types

If you started developing a project based on the empty project template,
you can still tell Visual Cafe what kind of project type you want it to be.

Clicking either radio button in the Project Type group displays a set of
options for the project. The contents of this subpage vary according to
which program type radio button you click: Application or Applet.

To set the project type to applet, application, JavaBean, Win32
application, or DLL

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select one of the following options:

Select… To specify this…

Applet The project is an applet. When you run a project, the Starter
HTML setting determines which HTML file is used. The HTML
file determines which applets are run. See “Specifying what
applets to run and the HTML file” on page 3-41.To specify
that your applets should run in your default Web browser,
select the Execute applet in default HTML viewer option.
Deselect it if you want to run applets in the Applet Viewer
associated with the Visual Cafe environment. For more
information, see “Making applets run in the Applet Viewer
or a browser” on page 3-42.

Application The project is a standalone application. To run the application
from Visual Cafe, the main class must also be specified. See
“Specifying the main class to run for an application” on
page 3-43.

Win32
Application
(Professional
edition only)

The project is a native, standalone executable. To run the
application from Visual Cafe, the main class must also be
specified.
3-40

Setting project-level options
5 Click OK.

The change takes effect next time you run your project.

Specifying what applets to run and the HTML file

An applet is launched from an HTML file that has an applet tag. Visual Cafe
can automatically create an HTML file with applet tags for all the applets in
your project. When you run your project from Visual Cafe, you can specify
what HTML file to use to display your applets. Here are some scenarios:
■ If you run your project with the automatically generated HTML file in

the Applet Viewer, all of your applets appear in separate windows.
■ If you run your project with the automatically generated HTML file in a

Web browser, all of your applets appear in an otherwise blank browser
window.

■ If you run your project with your own HTML file in the Applet Viewer,
each applet that has an applet tag will appear in a separate window.

■ If you run your project with your own HTML file in a Web browser, the
HTML file appears in a browser window, including the applets as
specified in the file.

If you want to test the files for a Web site, you could specify the home
page as the starter HTML and run the page from a Web browser. Then you
could access the other pages from this page to make sure your applets
work.

To test the files for a Web site:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Specify an HTML file in one of these ways:
■ Choose (Automatic) to run all of the applets from an automatically

generated HTML file that is blank.

Win32 DLL
(Professional
edition only)

The project is a native Dynamic Link Library (DLL). You can
specify the program to use to run and debug the DLL. You can
also set the library name, which is by default the project name
appended with the appropriate extension.

Select… To specify this…
3-41

Chapter 3: Working with projects and workspaces
■ Choose one of your own HTML files from the pop-up menu. HTML
files that you added to your project automatically appear in the
pop-up menu.

■ Click … to browse for an HTML file.
■ Type in the field to specify a file name or a URL, for example,

http://myserver.someplace.com/somefolder/
some.htm .

5 Click OK.

The change takes effect next time you run your project.

Making applets run in the Applet Viewer or a browser

When running applets from Visual Cafe, you can launch your applets in the
Applet Viewer associated with the Visual Cafe environment or in the Web
browser of your choice. The Web browser must be set up to be the default
Web browser for your computer.

Running applets in the Applet Viewer can be faster, because the browser
does not have to start up. However, it is a good idea to test your applets in
popular browsers before deployment.

Note: When you run an applet in the debugger, it is always run in the
Applet Viewer.

To specify where applets are to run:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Applet as the Project Type, if needed, then select Execute applet
in default Web browser if you want to run the applet in a browser or
deselect it if you want to run the applet in the Applet Viewer.

5 Click OK.

The change takes effect next time you run your project.
3-42

Setting project-level options
Tip: When this option is selected, Visual Cafe looks for the application you
have associated with the file extensions .htm and .html (Hypertext
Document file type). If an association does not exist, you must define one.

To set file associations (including the open action) in Windows 95 and
Windows NT 4.0 and higher, from a Windows file system window (such as
the Explorer), choose View, then Options, then click the File Types tab.

A browser might have already set the association for you, for example, the
file type Netscape Hypertext Document.

Specifying the main class to run for an application

When you run an application from the command line, you type the name
of the Java file that contains the main method. To run an application from
within the Visual Cafe environment, you must specify the starting point of
your application (the Java class file) so Visual Cafe knows how to run your
application. If you started a project with the Basic Application template or
inserted a Java file that already had a main method in it, the main class was
already specified for you. If there is no entry in this field, Visual Cafe tries
to use the project name.

If your application also accepts arguments on the command line (the main
method takes arguments), you need to specify those. See “Specifying
arguments for application execution” on page 3-44.

To specify the main class to run for an application:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Application, if needed, then type the name of the class file in the
Main Class field; for example, Frame1 or Frame1.class are both
acceptable. If the class is inside a package other than the Default
Package, you need to type package_name . class_name in this field.

You can enter one name only.

5 Click OK.

The change takes effect next time you run your project.
3-43

Chapter 3: Working with projects and workspaces
Note: If you rename a class that appears in this field, Visual Cafe updates
the field for you.

Specifying arguments for application execution

If your application accepts arguments on the command line (the main
method takes arguments), you need to specify them so Visual Cafe can run
your application from its environment. For example, the Sun Java compiler
is written in Java and takes command line arguments.

You also need to specify the main class. See “Specifying the main class to
run for an application” on page 3-43.

To specify command line arguments:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Application, if needed. In the Program arguments field, type any
arguments that should be passed to the program when you run it.

Delimit the arguments with a space.

5 Click OK.

The change takes effect next time you run your project.

Specifying whether to parse imports

Visual Cafe ships with the standard Java package imports from the Sun
Microsystems Java Developers Kit (JDK) in a preparsed form. These
imports might be required by applets and applications in order to execute.

By default, if you import other packages (including the Symantec
packages), Visual Cafe will parse them so you can, for example, look at
them in the Class Browser, view them in the Project window, and see them
in the Form Designer, if applicable. Not parsing imports requires less
computer resources and makes Visual Cafe run faster. You might want to
disable import parsing if, for example, you import a lot of third-party
packages and your computer runs very slowly as a result of the parsing.

To specify whether to parse inputs:

1 Activate the Project window of the project you want to work with.
3-44

Setting compiler options for a project
2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Parse imports to specify that imports be parsed automatically as
you work with the project. Or deselect it to not parse these imports.

5 Click OK.

The change takes effect immediately if you select the option. If you
deselect the option, no more imports are parsed.

Specifying whether to clear messages before builds

By default, Visual Cafe clears the Messages window before each build. This
makes it easier to see what messages apply to the current build. However,
you can specify that the window not be cleared so you can see messages
from previous builds and compare build messages.

To specify that the Messages window not be cleared before each build:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Clear Messages window before build to clear the Messages
window before each project build. Deselect this option to not clear the
window.

5 Click OK.

The change takes effect next time you compile your project.

Setting compiler options for a project
From the Compiler tab of the Project Options dialog box, you can control
what compiler information is sent to the Messages window, which Java
compiler to use, and if Java optimizations are performed. This view
changes the option set for the Debug or Final release type. For example, if
you have the debug option set selected and change an option in the
compiler page, Visual Cafe changes that option for the debug option set,
not the final option set. For more information, see “Specifying whether
builds are debug or final” on page 3-39.
3-45

Chapter 3: Working with projects and workspaces
To access the Compiler view:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Compiler tab.

Specifying general compiler options

There are several general compiler options that you can specify.

Show compiler warnings

Display compiler warnings in the Messages window. During development,
you may want to look at items identified by warnings. (Default: enabled)

Show all Java messages

In the Messages window, display detailed messages that you might be
interested in if you need more information; for example, if you have
import problems these messages trace where your classes are coming from
to help you resolve any import and class path problems. (Default:
disabled)

When using the Sun Java compiler, this option causes the compiler to
report diagnostic messages about its own execution. This option is ignored
by the Symantec compiler. (Default: disabled)

Show progress messages

Display compiler progress messages in the Messages window. (Default:
disabled)

Show dependencies

Display file dependencies, such as imports, in the Messages window.
(Default: disabled)

Generate debug information

Create debugging information used by the Visual Cafe debugger. For
example, this option lets you see local variables during debugging.
(Default: enabled for Debug and disabled for Final release types)
3-46

Setting compiler options for a project
Use Java optimizations

Optimize the Java executable for a more compact executable that runs
faster. (Default: enabled for Final and disabled for Debug release types)

Select the Disable function inlining option if needed. Inlining means that
Visual Cafe takes a function’s code and imbeds it in the calling function
instead of calling the function. Inlining increases execution speed but also
increases executable size. (Default: not selected)

Use the Sun Java compiler

Use the Sun Java compiler, javac.exe . When this option is cleared, the
Symantec Java compiler, which is faster, is used. Note that you cannot
compile native applications and DLLs with the Sun Java compiler. (Default:
disabled)

Specifying file search paths and the output folder

From the Directories tab of the Project Options dialog box, you can add
and remove folders (directories) that Visual Cafe uses to locate source and
class files and control where Visual Cafe puts compiler output files. This
view changes the option set for the Debug or Final release type. See
“Specifying whether builds are debug or final” on page 3-39 for more
information.

You can also set class path information for the entire Visual Cafe
environment. Remember that Visual Cafe does not inherit Windows class
path information unless it is set up to do so.

To access the Directories view:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Directories tab.

The source search path applies to Java source files and any text file that
can be opened in the Source window.

Note: You can set the source search path for the entire Visual Cafe
environment from the Environment Options dialog box and with the
javainc statement in the \VisualCafe\Bin\sc.ini file.
3-47

Chapter 3: Working with projects and workspaces
To specify source file search paths:

1 Go to the Directories view of the Project Options dialog box.

2 Choose Source Files in the Show directories for field.

A list of folders (directories) that can contain source files appears. The
folder order affects the search order: the topmost folder is the first to
be searched. The default setting, the project folder, does not appear in
the list; it is the first folder in the search order.

3 Modify the list as needed:
■ To change the order in which folders are searched, select a folder

and move it with the Up Arrow and Down Arrow buttons.
■ To delete a folder from the list, select the folder and click Delete.
■ To add a folder to the list, select the blank entry (marked by an

empty box) at the bottom of the list and type the folder name,
including the full path. Or click the New button (located above the
text box), then select a folder by clicking the … browse button that
appears in the field. You can also use the New button to insert a
new entry above the selected entry.

4 Click OK.

The change takes effect immediately.

To specify library file search paths (native only)

If a native application or DLL uses libraries, you need to make sure Visual
Cafe can find them. To specify locations to look for libraries, follow these
steps:

1 Go to the Directories view of the Project Options dialog box.

2 Choose Library files in the Show directories field.

A list of folders (directories) that can contain library files appears. The
order affects the search order: the topmost folder is the first to be
searched. The default is to search folders specified for the Windows
LIB environment variable; these folders do not appear in the list and
are last in the search order.

3 Modify the list as needed:
■ To change the order that folders (directories) are searched, select a

folder and move it with the Up Arrow and Down Arrow buttons.
■ To delete a folder from the list, select the folder and click Delete.
■ To add a folder to the list, select the blank entry (marked by an

empty box) at the bottom of the list and type the folder name,
3-48

Setting compiler options for a project
including the full path. Or click the New button (located above the
text box), then select a folder by clicking the … browse button that
appears in the field. You can also use the New button to insert a
new entry above the selected entry.

4 Click OK.

The change takes effect the next time you compile.

Specifying the output folder for a project

You can specify where compiler output files, such as class files, are stored
for this project.

Note: When you run a project in the Applet Viewer, the output folder is
temporarily added to the class path.

To specify the output folder:

1 Go to the Directories view of the Project Options dialog box.

2 Choose Output folder in the Show directories for field.

The folder appears. If no folder is specified, Visual Cafe uses the
default: a .class file is placed in the same location as the
corresponding .java file. If you do specify an output folder, all
output files are placed in this folder and any package file hierarchy
structures are created as well.

3 Type a folder and full path in the field, or select a folder by clicking
the … browse button that appears in the field.

4 Click OK.

The change takes effect the next time you compile your project.

Specifying class search paths for a project

You can tell Visual Cafe where to look for the class files used by a project;
for example, where to find the packages you are using. You can make up
your own custom list of folders, let Visual Cafe automatically generate the
class path based on the .java files you have added to your project
(including those created when you add top-level components), and use the
class path set for the Visual Cafe environment. If you specify one or more
of these options, the search order is your list, the automatically generated
list, then the class path for the environment.
3-49

Chapter 3: Working with projects and workspaces
To specify the class search paths:

1 Go to the Directories view of the Project Options dialog box.

2 Choose Class Path in the Show directories for field.

A list of folders (directories) appears. The folder order affects the
search order: the topmost folder is the first to be searched.

3 Modify the list as needed:
■ To change the order that folders are searched, select a folder and

move it with the Up Arrow and Down Arrow buttons.
■ To delete a folder from the list, select the folder and click Delete.
■ To add a folder to the list, select the blank entry (marked by an

empty box) at the bottom of the list and type the folder name,
including the full path. Or click the New button (located above the
text box), then select a folder by clicking the … browse button that
appears in the field. You can also use the New button to insert a
new entry above the selected entry.

4 To generate the class path based on the files in the project, select
Autogenerate class path. Otherwise, deselect it.

The default is selected. When this option is selected, if a file is not in
the project folder, the file path is added to the class path.

5 To append the Visual Cafe environment class path to the project class
path, select Append class path. If you deselect it, the class path defined
for the Visual Cafe environment is not used.

The default is selected.

6 Click OK.

The change takes effect immediately.

Setting the class path for the Visual Cafe environment

Visual Cafe gets its class path information from this file:
\VisualCafe\Bin\sc.ini . You can modify the sc.ini file to set
class path information globally for your Visual Cafe environment. You
should append your information to the classpath statement, not delete the
default classpath statement, because it can affect the operation of Visual
Cafe.
3-50

Setting compiler options for a project
Having the Visual Cafe environment inherit the class path
from the Windows environment

You can set up the sc.ini file so that Windows class path information is
inherited by the entire Visual Cafe environment. However, realize that the
class path information might not be useful for Visual Cafe projects and can
cause delays whenever Visual Cafe searches for the source corresponding
to a class file when your Java programs are built. Some products that use
class files do not have their own ini file, so they put their class path
information in the Windows environment.

For Windows 95, the class path is defined in the autoexec.bat file.
Windows NT can also use the class path in an autoexec.bat file, if it is
present.

For Windows NT 4.0 and higher, you can set the CLASSPATH variable by
opening Control Panel, then choosing System, then clicking the
Environment tab, and entering a value so it appears in the System or User
Variables list box.

Inheriting the Windows class path setting
1 In the Environment section of \VisualCafe\Bin\sc.ini, add the

following specification at the end of the classpath statement:

;%classpath%

2 Restart Visual Cafe for the change to take effect.

Setting the class path for a Web browser

Before deployment, you might want your Web browser to be able to locate
the Visual Cafe classes when the browser is launched outside of the Visual
Cafe environment. The Visual Cafe installer can set this class path
information for you. To set it manually, make sure the following is part of
the class path information for your Windows environment:

C:\visualcafe\java\lib\vecclass.zip

Using Version Control

You can use version control software that integrates into the Visual Cafe
environment. If you have installed version control software on your
computer, you will be able to select it in the Visual Cafe project options.
You enable version control software on a per-project basis.
3-51

Chapter 3: Working with projects and workspaces
See the documentation provided with your version control system for more
information.

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Version Control tab.

4 Choose the version control software you want to use.

You must properly install the software before you can use it.

5 Click OK.

The change takes effect immediately.

Note: If you enable a version control system or switch version control
systems for a project, the files are checked into the new version control
system as new files.

Setting remote debugging options for a project

From the Debugger tab of the Project Options dialog box, you can do the
following:
■ From General, you can specify if you want to enable remote

debugging. This allows you to debug a program from a remote site.
For more information, see “Debugging remotely” on page 8-34.

■ From Exceptions, you can view and customize how the debugger
works with exceptions for this project. For more information, see . .
“Handling exceptions” on page 8-13.

Defining the Visual Cafe startup mode

The startup mode defines what processing you want done when you start a
new Visual Cafe session.

1 From the File menu, choose Environment Options, then click the
General tab.

2 In the On Startup area, select the appropriate option.

Select… To specify this…

Create a new
project

Open a new project each time Visual Cafe starts.
3-52

Setting compiler options for a project
Automating source file backups

You can control whether files in a project are automatically backed up each
time that a save is performed. You can also specify the location and name
of the backup files.

Note: Only Java and HTML files that have changed are backed up. For
example, if you save all files in a project, only the files that have changed
are backed up.

To automate project backups:

1 From the File menu, choose Environment Options, then click the
Backup tab.

2 Select Backup files on Save.

3 Select the location and name of the backup files.

Open the last
project

Open the project that was active the last time Visual Cafe
exited.

Do nothing Specify that no project opens and that you will select an
appropriate action after Visual Cafe starts.

Select… To specify this…

Create BAK file Create one or more backup files that are
named file.bak .

Copy to folder Copy the source files to the specified folder.
You can type the folder with the full path
into the text box, or click … to select a folder
from a dialog box. There is no default.

Invoke OnBackup script Run your own macro, created with the Visual
Cafe macro utility and containing an
OnBackupFile statement. All macros are
placed in the \VisualCafe\Bin\Macs
folder.

Select… To specify this…
3-53

Chapter 3: Working with projects and workspaces
Defining a new default template

You can select a template to use as the default for all new projects.

1 From the File menu, choose New Project.

The current default template is highlighted and an asterisk is placed
next to the template name.

2 Select a template.

3 Click Set Default.

4 Click OK.

A new project is created based on the selected template. This template will
be used for subsequent new projects until the default is changed.

Creating a project template and adding it to the library

Project templates are used as the basis of new projects. When you create a
project from a template, the project initially contains the files and
components in the template. You can create your own templates as the
starting point of new projects.

Important: When you save a project as a template, make sure all of your
source files (both .java and .html) are in the same project folder or a
subordinate folder.

1 Create a project to be used as the template. Add any source code
filesthat you want to add.

2 With the current project in a Project window, choose Project, then
choose Create Project Template.

The Create Template dialog box appears.

3 Select the group that you want the template to belong to in the
Component Library.

If you do not select a group, the template is added to the Project
Templates group.

4 Type a name and description for the template in the appropriate fields.

The name and description is displayed for the template in the New
Project dialog box. The description appears when the template is listed
in the Component Library window.

5 Click OK.
3-54

Use Workspaces to customize your work environment
Visual Cafe copies the project and stores it as a project template. The
template is now available from the New Project dialog box.

Deleting a project template

The project templates that ship with Visual Cafe cannot be deleted. You
can delete a project template that you create as long as it is not the current
default template. After you delete it, it no longer appears in the New
Project dialog box.

1 Open the Component Library.

2 Display the contents of the Project Templates folder.

3 From the template list.

Use Workspaces to customize your work
environment

A large number of views are available in the Visual Cafe environment.
Visual Cafe lets you save a configuration of windows as a unique
workspace. A workspace provides a convenient way to switch from one
screen layout view to another.

A workspace is a saved arrangement of windows. Because the various
tools in Visual Cafe are displayed in many individual windows, workspaces
are used to group together the windows that have related functions.
Workspaces provide a means of organizing the multiple windows of the
development environment into logical groups. For example, when you edit
source code you could use a workspace that displays the text editor, the
Messages Window, and the Project window. When you are debugging your
program, you could use another workspace that opens windows for the
different debugging tools.

Workspaces are task-oriented as opposed to project-oriented. You create
workspaces for different tasks, such as designing, editing or debugging.
3-55

Chapter 3: Working with projects and workspaces
You can then access the workspaces from the Workspace toolbar or from
the Window menu under Workspaces

Visual Cafe supplies you with two workspaces; Edit and Debug. The
Debug workspace automatically loads when you run your application and
opens necessary debugging windows. When the processing ends, the
development environment returns to the Edit workspace.

You can create, delete, or rename workspaces. Only global view windows
are saved in a workspace.

Workspaces can be loaded automatically while running a project and when
you stop the project. They are saved dynamically. For example, if the
Property List window is open in the Edit workspace and you close that
window while in the Edit workspace, the change is saved permanently.
This feature ensures that as you run and stop your programs, the window
state remains as you last left them.

Visual Cafe supports the extended mouse functions of the Windows 95
interface. Right-clicking on various components of the windows opens
context-sensitive pop-up menus. As you work with Visual Cafe, try right-
clicking on the different parts of the screen. You may discover some useful
shortcuts!
3-56

Use Workspaces to customize your work environment
You can create, delete, and rename a workspace by using the Workspaces
menu option. Visual Cafe automatically saves changes to a workspace
configuration when you exit the workspace.

To change to a different workspace:

Use either of these methods:
■ From the Window menu, choose Workspaces, then choose one of the

workspace names displayed in the submenu.
■ From the Workspace toolbar, select the appropriate workspace name.

To save your current Visual Cafe window arrangement as a new
workspace:

1 Configure the screen as you like by opening the windows you need
and positioning and sizing them to suit your requirements.

2 From the Window menu, choose Workspaces, then choose New.

3 In the New Workspace dialog box, type a new name.

4 Click OK.

Visual Cafe creates a new workspace and displays it in the toolbar
Workspace field. The workspace is also added to the Workspace list.

To rename a workspace:

1 From the Window menu, choose Workspaces, then choose Rename.

2 In the Rename Workspace dialog box, type a new name.

3 Click OK.

Visual Cafe changes the workspace name and displays it in the toolbar
Workspace field. The name also changes in the Workspace list.

To delete a workspace:

Caution: Deleting a workspace immediately deletes the workspace named
in the toolbar Workspace field.

Note: You cannot delete the last remaining workspace.

From the Window menu, choose Workspaces, then choose Delete.
3-57

Chapter 3: Working with projects and workspaces
The workspace is deleted and the next workspace in the listing is
activated.

Working with subprojects
Visual Cafe lets you add subprojects to a project. When you compile the
parent project, the subproject gets compiled and saved as well. When you
run a project that has subprojects, only the parent project is run. To run
and debug a subproject, you need to open the project in its own Project
window.

You add subprojects to a project by using the Insert Files dialog box. You
choose the project file type and then select a project file and add it.
Subprojects appear in both the Objects view and Files view of the Project
window.

Subprojects only appear in the files view of the Projects window.

Note: There is currently no particular order in which subprojects are
compiled.

Adding subprojects
1 Open the project you want to add subprojects to.

2 From the File menu, choose Open.

The Open dialog box appears.

3 Navigate to the project folder.

4 Make sure Visual Cafe Project is shown in the Files of type field.

The projects display.

5 Select a project from the list.

6 Click Open.

The project opens with the last saved window configuration.

7 Add the .vep file of a project to the parent project.

The project you added becomes a subproject of the parent project. It
appears in the Files view of the Project window.
3-58

Working with subprojects
Objects View
Subprojects are not expandable in any of the Project window views to show
the visual elements within the subproject. Double-clicking the subproject
object opens the project in its own project window.

The column headers behave like they do in the Windows Explorer: you
click the header to sort by that column. Clicking the same column twice in
succession reverses the sort order.

Note: the project icon is not a final icon.

Files view

The Files view displays all the files within a project. Imports can be shown
or hidden. Subprojects are visible in Files view, but not expandable. You
3-59

Chapter 3: Working with projects and workspaces
can double-click a file to open it in the Source Editor, or double-click the
project icon to open the subproject in a separate Project window.

The Files view allows you to see the file name, location, type, modification
date and time, and its make status. You can remove a file from a project by
selecting the file and pressing DELETE.

In Files view, the following context menu is available when you right-click
a source file:

Project options and subprojects

Project options can be set for final and debug projects, and subprojects.
The page shows the settings that are common between the selected
projects.

If the settings differ between the selected projects, the settings indicate that
state.

The triangle in the upper right corner of the window is a pop-up menu that
contains any menu commands that are appropriate for that view.
3-60

Importing source code
Importing source code
Java source code for all kinds of applets and applications are already
written and available for you to download from the Internet, compile, and
execute. Also, many books written on Java and Visual Cafe contain sample
programs for you to use right away. To import source code from outside of
Visual Cafe:

1 Make sure that the source file is an extension of the Applet class. If so,
then create a Basic Applet project.

2 Insert the file.

3 Remove the Applet1.java file.

If the applet hangs, or Visual Cafe cannot compile it, then there may be
some problem in the code.

The Visual Cafe main file menus
This section describes the Visual Cafe menu commands.

The File menu

This section provides a detailed explanation of all commands in the Visual
Cafe File menu. The project types and options available from the New
Project dialog box are described, along with the options in the File Open
dialog box. The final sections of the chapter cover creating and modifying
project types.
3-61

Chapter 3: Working with projects and workspaces
You use the Visual Cafe File menu to create new source code files and to
open existing ones. You also use this menu to save and print your source
code and to create new project files as you need them.

New Project…

Opens the New Project dialog box, from which you can create a project
based on the default project types or one that you have developed and
saved.

To create a new project, choose a project type and click the OK button.
You can set your most often-used project type as the default project type
every time you start a new project.
3-62

The Visual Cafe main file menus
Project types are templates from which new projects are created. They
define the libraries, resources, and source code files that the project initially
contains, as well as the project’s options settings. Visual Cafe provides
templates for many common project types. You can create your own
project types and display them in the New Project dialog box.Once a
project is created from a project type, you can add files, remove files, and
change settings as needed. For details, see “Project types” on page 3-40.

New File

Opens an empty and untitled Editor window. You must save the contents
of the new window before you can add it to a project. Once the file has
been saved, you can add it to the active project by choosing Add
“filename” or Add Files from the Project menu.

Open…

Opens a File Open dialog box, which you can use to open text and project
files.

Visual Cafe lets you have more than one project open at a time. However,
only one project at a time is considered to be active. You can make any
open project–or any project that you have opened since you opened Visual
Cafe–the active project by choosing its name from the Window menu of
the Visual Cafe menu. If you choose a project that is not currently open
from the Window menu, Visual Cafe opens that project and makes it the
active project.
3-63

Chapter 3: Working with projects and workspaces
Files of Typelist box

The Files of Type list box, located at the bottom of the File Open dialog
box, is used to set a file filter for displaying files

You can open several types of files:
■ Custom (.java and .html files)
■ Visual Cafe Project (.vep)
■ Cafe Project
■ Visual J++ (.dsw , .dsp)
■ Java Source (.java)
■ HTML (.html)
■ All files (*.*)

Save / Save All

Save saves the contents of the frontmost Editor window to disk. If the file
has not yet been saved to disk, a standard File Save dialog box appears for
naming and placing the file.

Choosing the Save All command saves the contents of all open windows
that have unsaved modifications. This includes any text in the Worksheet
window (if open) and any changes made to source code in Class Browser
windows.

Save As…

Saves a copy of the contents of the frontmost Editor window with a new
name. If the file has been added to the project, the version of the file with
the new name replaces the older version in the project file.

Close Project Close Project closes the frontmost window. You can
perform the same function by clicking the close box on the right side of
the window’s title bar.

Exit You can also quit the Visual Cafe program by clicking the close
window button in the upper right corner of the Visual Cafe window.

Printer Setup…Opens the standard Printer Setup…dialog box for your
printer. Print… Prints the contents of the frontmost window. You can print
the following types of windows: Editor windows, the active pane of a Class
Browser window, and Project windows.
3-64

The Visual Cafe main file menus
The Edit menu

The Edit Menu contains standard Windows functionality, with added
functionality in the Debug workspace -- the Delete and Select All functions
are enabled. Keyboard shortcuts are listed to the right of each menu item.

Undo

This command cancels the last command you made.

Redo

This undoes the Undo command.

Cut

This item removes selected text from your screen and moves it to the
Clipboard on your system.

Copy

This command copies the selected items to the clipboard, but does not
remove them from the screen.

Paste

This command inserts the contents of your system’s Clipboard where you
position the cursor.
3-65

Chapter 3: Working with projects and workspaces
Delete

This command removes the selected item and does not move or copy it to
the Clipboard. You can use the Undo command to restore a deleted one if
it was your most recent command.

Select All

This command highlights all editable objects in the active window.

The Search menu

The search menu contains commands for searching and locating items
within your project files very quickly.

Find...

Opens the Find dialog box, where you can enter search criteria for the file
in the active editing window.
3-66

The Visual Cafe main file menus
Find Again

Finds the next occurrence of the text string previously defined with the
Find command.

Replace...

Opens the Replace dialog box, where you can specify a search string and
replacement text for the file in the active editing window.

Find in Files...

Opens the Find in Files dialog box, where you can search for text across
multiple files. The scope of the file search can be defined.

Compare Files...

Opens the Compare Files dialog box, where you can specify two file to
compare. The differences are presented in editing windows, allowing you
to view the lines that are different.

Bookmarks...

Opens the Bookmark dialog box, where you can add, remove, or go to a
bookmark. You can set and move to as many as ten different locations in
your source files. Bookmarks are saved through the current Visual Cafe
session only.

Go to Buffer...

Opens the Go to Buffer dialog box, where you can change the options for
the current edit buffer or those of another.

Go to Line...

Opens the Go to Line window where you can specify a line number to
move to. The Source pane is scrolled to the requested line. If any text is
currently selected, the selection is extended to include that line.
3-67

Chapter 3: Working with projects and workspaces
Go to Function

Opens the Go to Function window so that you can select an available
function from the list. The edit window's focus is moved to the selected
function location.

Go to Definition

Opens the selected method or data member in the Class Browser. The
associated code block appears in the editing pane. If there are multiple
occurrences of the selection in the source file, then the Members window
opens for a selection.

Go to Marking Delimiter

Finds the delimiter that matches the delimiter to the right of the current
insertion point. The insertion point is moved to the front of the matching
delimiter. This command can find matching parentheses, square brackets,
or braces.

Go to Current Error

Go to First Error

Go to Next Error

Go to Previous Error

The Go to error commands move the editing window focus to the location
of the corresponding error.
3-68

The Visual Cafe main file menus
The Insert menu

With the Insert menu, you can use commands to add items to the current
project.

Form

Opens the Insert Form dialog box so that you can insert a form from the
Component Library into the current project.

Applet

Inserts an applet if there are no saved applet objects, or opens the Insert
Applet dialog box where you can select an applet from a list of applet
templates.

Component

Opens the Insert Component dialog box so you can add one or more
objects from the Component Library to the active form or to the project.

Class

Opens the Insert Class Wizard, where you can add and define a new class
or interface for the current project.

Member

Opens the Insert Member dialog box, where you can declare a method to
be added to the current class.
3-69

Chapter 3: Working with projects and workspaces
Group

Adds a group to the current project or group. Groups can only be inserted
at the root level of the Component Library window or inside other groups.

Files into Project

Opens a dialog box where you can select one or more files to be added to
the project. You can also remove files from the project with this dialog box.

Component into Library

Opens a dialog box where you can add an external component to the
Component Library.

The Object menu

The Object menu is available in the menu bar when the Project window is
active.

Edit Frame

Opens the selected item in its corresponding editor. This command is
enabled only when the selected object is a form or visual object. The menu
name changes to reflect the type of object selected. The object could be an
applet, frame, dialog, or any component type.

Edit Source

Opens the Source window for the selected object. Allows you to view the
code associated with an object.
3-70

The Visual Cafe main file menus
Add Interaction

Opens the Interaction Wizard where you can create an interaction for
objects in your project. This command uses the selected object as the
trigger component.

Add To Library

Opens the Add to Library dialog box, where you can save the selected
object in the Component Library.

The Window menu

New Window

Creates a new instance of the active source window. Each new instance of
the same window is incremented to indicate the number of open windows.

Workspaces
■ Edit
■ Debug
3-71

Chapter 3: Working with projects and workspaces
Selecting a workspace from the list saves your current workspace and
configures your environment to the new layout.

New…allows you to create a new workspace.

Rename…allows you to rename a workspace.

Delete allows you to delete a workspace.

You can activate the display of these tools:
■ Property List
■ Component Library
■ Hierarchy Editor
■ Class Browser

You can activate the display of these debugging windows:
■ Watch
■ Breakpoint
■ Messages
■ Threads
■ Variables
■ Call Stack
■ Recently Used Windows

To display one of the windows that you used recently, you can select
the window name from the numbered list on the menu.

Windows… displays a list of recently used windows.

The Help menu

[

3-72

The Visual Cafe main file menus
Help Topics

Opens the Content listing for the Visual Cafe online help. The online help
provides task and context sensitive information.

Java API Reference

A reference of all Java packages, classes and interfaces for each package.
Variables, constructors, and methods are also included.

Java Language Reference

Opens the Content listing for the Java Language Reference.

About Visual Cafe

Displays version and copyright information for this release.

LiveUpdate

Helps you update your software across the Internet through a Symantec
Web site. Before you can use LiveUpdate, you must register at the
Symantec update center; after registering, you are given a file that enables
LiveUpdate. See “Updating Visual Cafe with LiveUpdate” on page 9-19.
3-73

C H A P T E R 4
Working with Java Source
Code

Classes are the foundation of object oriented programming. To make
working with classes easier, Visual Cafe provides several powerful tools for
working with classes:
■ Class Browser
■ Hierarchy Editor
■ Event Class Wizard
■ Source Code Editor

This chapter describes how to use these tools, as well as how to add your
own packages or third-party packages to Visual Cafe, and how to work
with events and interactions.

Using the Class Browser
The Class Browser is a three-pane window that lists all of the classes,
methods and data items contained in your program. This tool provides
abstraction from the underlying source files by letting you navigate and
edit your classes and members quickly. In the Class Browser you are free
from the clutter of other member implementations in the same source file.
The Class Browser helps you work with your source code in an organized
way. It’s not very easy to read a 27-page source file filled with references to
multiple classes. You need to be able to keep track of what each of the
classes does, what data is in each class, and how the methods within the
classes work.
4-1

Chapter 4: Working with Java Source Code
The Class Browser window shows the class hierarchy in your project and
lets you quickly navigate and add classes, modify extension relationships,
and view and edit class member declarations and definitions. The Class
Browser window shows data and methods for each class and an edit area
for working directly with the body of a method.

You cannot switch a Class Browser window to a different project after it
has been opened. To examine the classes of a different project, make the
other project the active project, then open a new Class Browser window.

You only see the methods and data members for the selected class, and
only the Java code for the selected member. The isolation of member
source code provides an extra degree of security by ensuring that you do
not unintentionally change code outside of the object’s scope.

Both the Classes and Members panes support keyboard incremental
searches. As you type the name of a class or member, the list of matching
objects is refined until the desired class is automatically selected.

Any change made to classes or inheritance relationships is automatically
changed in the associated source code and saved. Saves are done as you
move between members or classes.

The bottom editing pane provides the same editing features as the Source
window.

Right-mouse pop-up menus are available for each pane. You can select
multiple items in the pane by using Shift-click.
4-2

Using the Class Browser
To open a Class Browser window, choose Class Browser from Visual Cafe’s
Window menu. If you choose this command with a Class Browser window
already open, the window becomes the frontmost window.

To open a new Class Browser window when one or more Class Browser
windows are already open for a project, choose New Window from the
Window menu.

You may change the relative size of the panes by dragging the size bars.
Once you have established a new relative size for a pane, it is maintained
when the window is resized. The following types of information are
displayed in the active window:
■ Classes, which shows all classes defined for the project after compiling

the project
■ Members, which shows the member functions for a selected class
■ Source, which shows the source code for a class, member, or data item

Grouping and sorting classes and members

Use the following functions to group and sort classes and members. Right-
click in the Class Browser and select Options...
4-3

Chapter 4: Working with Java Source Code
Using the Class Options, Group/Sort tab

Use this tab to change the ordering of classes and member elements in the
Class Browser.

Specifying group classes

Specify how the classes in the Classes pane are to be grouped:
alphabetically, hierarchically, or by package.

Sorting members

Specify how the members in the Members pane are to be sorted in their
group. Grouping of members is controlled with Group Members. The
None option sorts the elements based on the order in which they were
created.

Group members

This defines the grouping of members in the Member pane. The By Kind
option groups the elements as Methods or Data. The By Access option
groups the elements by their access type.

Controlling the display of inherited methods

Use the following functions to control the display of inherited methods.

Using the Class Options, Inheritance tab

Use this option to toggle the display of inherited methods in the Class
Browser’s Members pane.

Showing inherited methods

Use this option to toggle the display and activates two sub-options.

Using full method names

Use this option to add the method’s package and class name to the method
names in the listing.
4-4

Navigating the panes
Showing overridden methods

Use this option to add methods that are overridden by methods in the class
to the Member listing.

Navigating the panes
The Classes, Source, and Members panes are all lists. You scroll a list until
an item is visible. You can also type the first few letters of the item’s name
and the list automatically scrolls to the first item that begins with those
letters.

Navigating the Classes pane

The Classes pane displays a list of your project’s Java classes. This view
also provides an outline in which subclasses display indented and below
their parent. A class that implements multiple interfaces appears below
each interface class.

You can change the ordering of the classes by using the Options command
in the pop-up menu. You access this pop-up menu by right-clicking in a
pane, then selecting Options. This command opens the Class Options
dialog box’s Group tab. By default, the classes appear alphabetically by full
package name. The classes in the default package are displayed first.

To add a class, use the pop-up menu, then select Insert Class command.
This command is the same as choosing Class from the main Insert menu.

If you select a class in the Classes pane, the member functions it
implements are displayed in the Members Functions pane. The data
members it defines are also displayed in the MembersData pane. Inherited
member functions and data members are not displayed. You may display a
class declaration in the Source pane by double-clicking its name in the
Classes pane.

Classes do not appear in the Classes pane until the source code file that
contains their definition has been compiled at least once.

Using the Classes pane

When you display the Classes pane in graphical order, you can specify (by
means of the Options button) the following options:
4-5

Chapter 4: Working with Java Source Code
Using the Show All Classes option

Select this option to display the entire class hierarchy. If you select a class
and deselect this option, the display focuses on the selected class showing
only its direct base class and direct descendents. In addition, you can
“follow” the class hierarchy by clicking on each graphically displayed base/
descendent class.

To change the focus from the currently displayed class, you can type the
name of any other class while the class pane is active. When you type the
name, that class becomes the focus of the pane regardless of the class
currently displayed in the window.

Using the Show Implements option

When you select this option, multiple inheritance lines are drawn in the
hierarchy. The Class Browser uses the first class mentioned in a class
definition as the direct base class of the class.

Finding a class

Click in the Classes pane, then type the class name. For example, to locate
java.awt.FlowLayout, type flo. Press TAB to go to the next entry with that
letter sequence.

As you type, selections are made to match the text you enter. As you
continue typing, the search is refined.

The class you are searching for is highlighted.

Notes:

In the Class Browser, the search is conducted by package and only
expanded packages are searched. So if you want to locate a class in a
particular package, you need to expand the package by clicking the +,
then start typing. If you want to exclude a package from a search, then
collapse the package (click the -).

If the class you want is not displayed in the pane, you might need to
change what classes are displayed, as described next.
4-6

Navigating the panes
To change which classes are displayed in the Classes pane:

1 In the Classes pane, choose Classes, then Options, or right-click and
choose Options.

2 In the Class Options dialog box, set the options you want:
■ In the Group/Sort tab, specify whether you want to group classes

alphabetically, hierarchically, or by package.
■ In the Filter tab, specify where you want to show imported classes.

To create a new class with the Class Wizard:

1 In the Classes pane, optionally select a class you want the new class to
extend.

2 Right-click in the Classes pane and choose Insert Class.

The Insert Class Wizard appears.

3 Complete the Insert Class Wizard. “Using the Insert Class Wizard” on
page 4-20 for more details.

The new class appears in the Class Browser display and is added to the
project.

Adding a class

You can add a custom class that extends an existing class, the parent class,
or a developer-defined class (extensions of java.lang.Object).

Classes can be added at any time by choosing Class from the Insert menu.

You can add methods to a component from the Class Browser or Source
window.

Adding a subclass from the Class Browser

As an alternative to using the Insert menu, you can add a class within the
Class Browser.

To add a subclass from the Class Browser:

1 Select a class as the base class of the your new class.

2 Right-click in the Classes pane to display the pop-up menu.

3 Select the command Insert Class.

4 Complete the Insert Class Wizard.
4-7

Chapter 4: Working with Java Source Code
The new class name appears in classes pane. The source pane shows
the class declaration.

The Insert Class Wizard makes creating new Java classes and interfaces
easier and more foolproof by setting up a complete prototype for you.

To edit a class or interface with the Edit Class Wizard:

1 In the Classes pane, select a class you want view or edit.

2 Choose Classes Edit Class, or right-click in the Classes pane and
choose Edit Class.

The Edit Class Wizard appears.

3 Complete the Edit Class Wizard. On the first page of the wizard,
specify the options you need:

4 Click Finish if you are finished with the definition, or continue by
clicking Next.

Options Description

Type Select Class if you are creating a class or
Interface if you are creating an interface.

Name Type the name of the class or interface.

Source Type the complete path to the Java file. Click
the Edit button to browse. In the Edit Class
File dialog box, you can specify the package
and Java file name, and the file path is
displayed for you.

Package Choose a package to add the class or
interface to, or None to not add it to an
existing package.

Extends If you are defining a class, choose a class to
extend from.

Access Select whether you want to make access to
your class through Package, Public, Private
or Protected. Public is available only if the
class name and file name are the same;
Protected and Private are for inner classes
only.

Final or Abstract Select Final class or Abstract class.
4-8

Navigating the panes
The next page of the wizard appears, where you can choose the
interfaces to implement.

5 From the Available interfaces list, select the interfaces you want to
implement and click the downward-pointing arrow.

To move an interface from the lower list box to the upper one, select
the interface and click the upward-pointing arrow.

6 Click Finish if you are finished with the definition, or continue by
clicking Next.

The next page of the wizard appears, where you can choose the
methods to override. Required methods already appear in the Override
these methods list box.

7 From the Available methods list, select the methods you want to
override and click the downward-pointing arrow.

To move a method from the lower list box to the upper one, select the
method and click the upward-pointing arrow. You cannot move
methods that are required.

8 If you want to review or change part of the definition, click Back.

You can go back to previous pages of the wizard.

9 Click Finish when you are finished with the definition.

The new class is inserted in the active project.

10 Complete the definition of the class or interface in the Source window
or Class Browser.

11 Click OK.

The new class name appears in classes pane. The source pane shows
the class declaration.

Tip: To delete a class, select the class and press Delete.

Classes defined in subprojects are not displayed in a project’s Class
Browser window—except for base classes from which one or more classes
in a project are derived. These base classes are listed in italic in the Classes
pane. You cannot examine these classes in the Members or Source panes.
To browse classes defined in a subproject, make the subproject the
frontmost project, then open a new Class Browser window.
4-9

Chapter 4: Working with Java Source Code
Viewing and editing the source code for a class

You can view source code in the bottom editing pane of the Class Browser
or in a Source window. The bottom editing pane has the same editing
options as the Source window.

To display source code in the bottom editing pane, select a class in the
Classes pane then a member in the Members pane.

To display source code in a Source window, from the Classes pane, select
a class then choose Classes, > Go to Source, or right-click a class and
choose Go to Source.

To delete a class inheritance:

1 In the Classes pane, choose Classes, then Options, or right-click and
choose Options.

2 In the Group/Sort tab, specify a Class Grouping of Hierarchically, then
click OK.

When you are showing classes by a Hierarchical view and a class
implements one or more interfaces, it displays below each interface.

3 In the Classes pane, select a class, then press DELETE.

If you delete a class that is specified below an interface, that interface
is deleted from the class. If you delete a class below a class, the class
now inherits directly from java.lang.Object.

To delete a class:

In the Classes pane, select a class, then press DELETE.

Adding a method from the Class Browser

The Class Browser is a convenient way to add methods.

To add a method from the Class Browser:

1 In the Classes list, select the class that will contain the new method.

2 From the Insert menu, choose Member.

The Insert Member dialog box appears.

3 Specify the member declaration.

For data items, enter the type and member name (for example, int
nCats). A trailing semicolon is optional. The member declaration is
placed into the class declaration.
4-10

Navigating the panes
Note: The Source File field is not editable. It displays the name of
the source file into which the member definition will be placed.

4 Indicate the base class access type. You can also select the appropriate
member group from the members list.

This dialog box is also available with the Insert Member command on
the Class Browser, Members pane pop-up menu.

5 From the Insert menu, choose Member, or use the right-mouse Insert
Member command.

6 Complete the Insert Member dialog box.

7 Click OK.

The new member is selected in the Members list and the declaration
appears in the editing pane.

Navigating the Members pane

The Members pane displays a list of methods and data elements in the
selected class. Clicking on a member causes its associated Java source code
definition or declaration to display in the editing pane.

By default, the methods and data members display in two groups with
each element sorted alphabetically within the group. Each element has a
color-coded icon to indicate its access privileges (green = public, yellow =
protected, blue = package, and red = private.)

You can change the display of elements in the Members pane by using the
Options command in the pop-up menu. This command opens the Class
Options dialog box’s Group/Sort tab.

To locate a method or data variable in the Members pane:

1 Select a class in the Classes pane.

Note: If the class you want is not displayed in the pane, you might
need to change what classes are displayed, as described
previously.

2 Click in the Members pane, then type the method or data variable
name. For example, to locate the CENTER data variable for the
FlowLayout class, type cen. Press TAB to go to the next entry with that
letter sequence.
4-11

Chapter 4: Working with Java Source Code
The method or data variable you are searching for is highlighted. The
source code is displayed in the bottom editing pane.

Each member has a color-coded icon to indicate its access privileges
(green is public, yellow is protected, blue is package, and red is
private).

Note: If the method or data variable you want is not displayed in
the pane, you might need to change what members are displayed,
as described next.

To change what members are displayed in the Members pane:

1 In the Members pane, right-click and choose Options. Or while the
Class Browser is the active window, choose Classes, then Options.

2 In the Class Options dialog box, set the options you want:
■ In the Group/Sort tab, specify whether you want to sort members

by access (public, private, protected, and package), alphabetically,
or not at all.

■ In the Group/Sort tab, specify whether you want to group members
by kind or by access.

■ In the Filter tab, specify what members you want to show (choose
from public, private, protected, package, final, static, and regular)
and if you want to display their types.

■ In the Inheritance tab, specify whether you want to show inherited
methods, and if so, if you want to display full method names or
show overridden methods.

To create a new member from the Members pane:

1 In the Class pane, select a class you want to add a method or data
variable to.

Note: If the class you want is not displayed in the pane, you might
need to change what classes are displayed, as described
previously.

2 Right-click in the Members pane and choose Insert Member. Or while
the Class Browser is the active window, choose Insert Member.

The Insert Member dialog box appears.

3 Type the declaration and choose the access type, then click OK.
4-12

Navigating the panes
For example, int myVar ()is a valid declaration you could type. The
member appears in the Members pane.

4 Select the member in the Members pane to view and edit source code
in the bottom editing window.

To view attributes of a member from the Members pane:

1 In the Class pane, select a class that contains the member.

Note: If the class you want is not displayed in the pane, you might
need to change what classes are displayed, as described
previously.

2 Select the member in the Members pane.

Note: If the method or data variable you want is not displayed in
the pane, you might need to change what members are displayed,
as described previously.

3 Right-click in the Members pane and choose Member Attributes. Or
while the Class Browser is the active window, choose Classes, then
Member Attributes.

4 The Member Attributes dialog box appears.

5 Change the access type if needed, then click OK.

To delete a member from the Members pane:

1 In the Class pane, select a class that contains the member.

Note: If the class you want is not displayed in the pane, you might
need to change what classes are displayed, as described
previously.

2 Select a member or shift-click multiple members in the Members pane.

Note: If a method or data variable you want is not displayed in the
pane, you might need to change what members are displayed, as
described previously.

3 Right-click in the Members pane and choose Delete Member. Or while
the Class Browser is the active window, choose Classes Delete
Member.

The member is deleted from the class.
4-13

Chapter 4: Working with Java Source Code
You can view source code in the bottom editing pane of the Class Browser
or in a Source window. The bottom editing pane has the same editing
options as the Source window.

To view or edit the source code of a member:

Do either of the following:
■ To display source code in the bottom editing pane, select a class in

the Classes pane then a member in the Members pane.
■ To display source code in a Source window, from the Classes pane,

select a class then choose Classes Go to Source, or right-click a
class and choose Go to Source.

To rename a class or member:

1 Select the class or member in the Classes or Members pane. Then click
it again.

2 When a larger edit box appears, type the new name or edit the existing
name.

The constructor is renamed for you.

To add a class or member name by dragging it into source code:

Select the class or member in the Classes or Members pane, then drag
it into the bottom editing pane or a Source window.

The class or member name is added at the location you drop it.

Using the Member Attributes dialog box

Use this window to change the access type of selected members.

To access the Member Attributes dialog box:

1 Click on a member in the Members pane.

2 Choose Classes, then Member attributes.

The Members Attributes dialog box opens.

The class declaration is modified and the Members display is updated to
reflect the change.

If you are editing several members simultaneously and the original access
specifiers are not identical, a Don’t Change option displays. This option lets
you change member attributes without affecting the original access of each
member.
4-14

Navigating the panes
Navigating the Source pane

The Source pane displays the source code for a class definition, a member
function definition, or a data member definition. All editing operations
available in source file Editor windows are available in the Source pane.
Any editing operation done within the Source pane is synchronized with
all open source file Editor windows.

Adding a method from the Source pane

Event handlers and other source code can be added directly in the Source
pane.

To add a method from the Source pane:

1 Open the Source pane for the applet or form.

2 In the Source panel, select an event method from the Event drop-down
list.

A code template and the appropriate event handler logic is added
automatically to the source code.

3 Replace the placeholder text “// to do: place event handler code here”
with appropriate Java code.

4 Save the file.

Editing event handler methods

There are several ways to access an object’s Java source code for event
handlers.

To edit event handler methods from the Form Designer:

1 Do either of the following:
■ Double-click the form background or a component.
■ Select the object and from the Edit Source menu, choose Object.

2 From the Source window Events drop-down list, select the event that
you want to edit.

3 Enhance the code block as needed.

To edit event handler methods from the Class Browser:

1 Select the object class that you want to enhance.

2 In the Members pane, double-click on the event that you want to edit.
4-15

Chapter 4: Working with Java Source Code
3 In the editing pane, enhance the code block as needed.

Note: The Class Browser window does not automatically keep member
function’s definitions synchronized with their definitions. If you change a
member function’s declaration or definition in the Source pane, you must
manually update the other part to match.

Configuring the Class Browser and Hierarchy Editor

You can enable multiple component selection and select confirmation
options for both the Class Browser and the Class Hierarchy.

To configure the Class Browser and Hierarchy Editor:

1 From the Tools menu, choose Environment Options. Click the Editing
tab.

2 In the Class Browser and Class Hierarchy area, select or clear
appropriate options:.

Tip: You can also enable a horizontal scroll bar in the Class
Browser source pane by selecting the scroll bar option in the
Source window area.

Option Description

Confirm Delete Member Display a confirmation message before
deleting a class member.

Confirm Inheritance Change Display a confirmation message before
applying inheritance changes.

Multiple Selection Display a confirmation message before
applying a change to multiple selected
objects. Yes - allow multiple select. No:
disallow multiple selects. Confirm: allow but
confirm changes to multiple select.
4-16

Navigating the Hierarchy Editor
Navigating the Hierarchy Editor
The Hierarchy Editor is a visual tool that provides you with a visual
representation of the classes in your project, and their inheritance
relationships. You can optionally show imports as well.

All Java programs have a hierarchical structure. You can use the Hierarchy
Editor to directly manipulate the class relationships of your projects, by
dragging and dropping from one class to another.

You can change inheritance by clicking the line between a parent and base
class, then dragging the line by its anchor to another base class.

Double-clicking a class opens the Class Browser on the selection.

You can view all classes used by the project by choosing the View Imports
command on the pop-up menu. You may also view class data and methods
using the Hierarchy Editor’s Member and Source Windows.

You can extend existing classes just by clicking and dragging. You can also
create a new parent-child relationship by clicking a class and dragging to
the desired parent class. If you double-click a class, that class is displayed
in the Class Editor so you can view its data and methods.

Changes made to classes or inheritance relationships are automatically
changed in the underlying source code and in all open windows in the
Visual Cafe environment. For that reason, you should be careful when
making changes with the Hierarchy Editor.

Note: Visual Cafe does not let you change the structure of the existing Java
hierarchy.

To display the Hierarchy Editor:

While the project you want to view is active, choose Window, then
Hierarchy Editor.

To enable and disable viewing imports:

While the Hierarchy Editor is the active window, choose Hierarchy
View Imports or right-click and choose View Imports to toggle the
display.
4-17

Chapter 4: Working with Java Source Code
To locate a class in the display:

While the Hierarchy Editor is the active window, type the class name.
For example, to locate java.awt.FlowLayout, type flo.

As you type, selections are made to match the text you enter. As you
continue typing, the search is refined.

The class you are searching for is highlighted.

To change the inheritance hierarchy:

Click the line between a parent and base class, then drag the line by its
anchor to another base class.

To remove an inheritance:

Select the line between a parent and base class, then right-click and
choose Remove Inheritance.

The class now extends directly from java.lang.Object.

To create a new class:

1 Optionally select a class you want the new class to extend.

2 Drag from the class into the background space, or right-click and
choose Insert Class.

The Insert Class Wizard appears.

3 Complete the Insert Class Wizard. See “Using the Insert Class Wizard”
on page 4-20 in this chapter.

The new class appears in the Hierarchy Editor display and is added to
the project.

To edit an existing class:

1 Select a class you want view or edit.

2 Right-click and choose Edit Class. Or choose Hierarchy, then Edit
Class.

The Edit Class Wizard appears.

3 Complete the Edit Class Wizard. See “Using the Insert Class Wizard” on
page 4-20 in this chapter for more information.

To view a class in a Source window

Select a class then choose Hierarchy, then Go to Source, or right-click
a class and choose Go to Source.
4-18

Working with subclasses
To view a class in the Class Browser

Double-click a class in the Hierarchy Editor.

Working with subclasses
As an alternative to using the Insert menu, you can add a subclass within
the Hierarchy Editor, Project window, or Class Browser.

To add a subclass from the Hierarchy Editor:

1 Select the parent/base class.

2 Drag the selection and release it in any whitespace of the window
background.

3 Complete the Insert Class wizard. See “Using the Insert Class Wizard”
on page 4-20 in this chapter for more information.

To add classes to an existing package from within the Project window:

1 In the Project window, click the Packages tab.

2 Select the package to which you want to add the class.

3 Choose Insert, then Class.

4 Complete the Insert Class wizard. See “Using the Insert Class Wizard”
on page 4-20 in this chapter for more information.

To add a class within the Class Browser:

1 Select a class as the base class of the your new class.

2 Right-click in the Classes pane to display the pop-up menu.

3 Select the command Insert Class

4 Complete the Insert Class wizard. See “Using the Insert Class Wizard”
on page 4-20 in this chapter for more information.

The new class name appears in classes pane. The source pane shows
the class declaration.

Note: To delete a class, select the class and press DELETE.
4-19

Chapter 4: Working with Java Source Code
Changing inheritance relationships

You can change inheritance relationships by clicking on the line between a
parent and base class, then dragging the line by its anchor to another base
class.

Double-clicking on a class opens the Class Browser on the selection.

You can view all classes used by the project by choosing the View Imports
command on the pop-up menu.

Deleting inheritance relationships

Deleting the inheritance relationship between a class and its parent can be
done in the Hierarchy Editor.

To delete an inheritance relationship:

1 Select the line that links a class and its parent.

2 Right-click on the window to display the pop-up menu.

3 Choose Delete Inheritance.

Using the Class Attributes dialog box

You can change the class name and its base class.

To change the attributes for the selected class:

Do either of the following:
■ Choose Classes, then Class Attributes
■ Hierarchy, then Class Attributes

Using the Insert Class Wizard
The Insert Class Wizard makes creating new Java classes and interfaces
easier and more foolproof by setting up a complete prototype for you.

To define a new class or interface with the Create Class Wizard:

1 Do one of the following:
■ From the Insert menu, choose Class.
4-20

Using the Insert Class Wizard
■ Select a class or interface in the Classes pane of the Class Browser,
then right-click and choose Insert Class.

■ Select a class or interface in the Hierarchy Editor, then drag a line
from it.

If you select a class, that class becomes the default class to inherit
from.

To edit a class or interface with the Edit Class Wizard:

1 Do either of the following:
■ Select a class or interface in the Classes pane of the Class Browser,

then choose Class Attributes from the Classes menu or right-click
and choose Class Attributes.

■ Select a class or interface in the Hierarchy Editor, then right-click
and choose Class Attributes.

2 On the first page of the wizard, specify the options you need:

Option Description

Type Select Class if you are creating a class or
Interface if you are creating an interface.

Name Type the name of the class or interface.

Source Type the complete path to the Java file. Click
the Edit button to browse. In the Edit Class
File dialog box, you can specify the package
and Java file name, and the file path is
displayed for you.

Package Choose a package to add the class or
interface to, or None to not add it to an
existing package.

Extends If you are defining a class, choose a class to
extend from.

Access Select whether you want to make access to
your class through Package, Public, Private,
or Protected. Public is available only if the
class name and file name are the same;
Protected and Private are for inner classes
only.

Final or Abstract Select Final class or Abstract class.
4-21

Chapter 4: Working with Java Source Code
3 Click Finish if you are finished with the definition, or continue by
clicking Next.

The next page of the wizard appears, where you can choose the
interfaces to implement.

4 From the Available interfaces list, select the interfaces you want to
implement and click the downward-pointing arrow.

To move an interface from the lower list box to the upper one, select
the interface and click the upward-pointing arrow.

5 Click Finish if you are finished with the definition, or continue by
clicking Next.

The next page of the wizard appears, where you can choose the
methods to override. Required methods already appear in the Override
these methods list box.

6 From the Available methods list, select the methods you want to
override and click the downward-pointing arrow.

To move a method from the lower list box to the upper one, select the
method and click the upward-pointing arrow. You cannot move
methods that are required.

7 If you want to review or change part of the definition, click Back.

You can go back to previous pages of the wizard.

8 Click Finish when you are finished with the definition.

The new class is inserted in the active project.

9 Complete the definition of the class or interface in the Source window
or Class Browser.

Using the Source Editor
The source editor supplies standard Windows functions for cutting,
copying, pasting, and deleting text. These functions can be accessed
through either the Edit menu or the pop-up menu. In addition, by clicking
and dragging a block of selected text, you can reposition the text anywhere
in the buffer. Press the Control key while releasing the block to copy rather
than move the block. When you are dragging text blocks around in this
way, a small outlined box and “+” is drawn next to the cursor to indicate
this mode.

Text selection is accomplished using one of three standard techniques:
clicking and dragging the mouse, shift-clicking, or ALT-clicking. The
ALT+click drag performs a column select.
4-22

Using the Source Editor
Creating a new document

You can create documents from within Visual Cafe. You may want to create
documents for custom HTML pages and Java files.

To create a new document, open the File Menu and choose New File.
Create your document in the Source window and save it. When you save
the file, be sure to select the correct document type: HTML, Java,
definition.

Adding code to a Java source file

Code can be added to a class source code from the Source window or
Class Browser editing pane.

Although you can create many applets with Visual Cafe that do not require
any custom Java code, you may want to add code for advanced applets
and for applications.

Custom code may be added for error handling, event control, and complex
component relationships and behavior.

You can bind code to any component and to menu commands.

Caution: Custom code is not deleted from the source file when you delete
a component. You must manually maintain any file that contains custom
code.

Guidelines and warnings
■ Whenever possible, make object changes using Visual Cafe, versus

adding code directly to the source file. For example, adding
components, classes or class members, and changing component
properties can be done through the Component Palette, using a menu
selection, or making a change in the Property List window.

■ Do not add to or modify custom code within code blocks that are
regenerated. Visual Cafe places special comments in the source code
to indicate the beginning and end of blocks of code that it needs to
manage. These code blocks start with //{{ and end with //}}. For
example, if you add a button to a form, Visual Cafe generates the
following code:

//{{DECLARE_CONTROLS
4-23

Chapter 4: Working with Java Source Code
java.awt.Button button1;

//}}

//{{INIT_CONTROLS

button1 = new java.awt.Button("button");

button1.reshape(63,77,88,30);

add(button1);

//}}

Avoid moving these code blocks. But if you do, be sure to move the entire
code block, including the special comments.

Editing source code

The purpose of the Visual Cafe source editor is to create, examine, and
modify your project’s source files. Because these files are standard text
files, you can, in principle, use any source editor to work with them. The
source editor is designed to work in concert with other Visual Cafe tools.

The Visual Cafe Source window and the Class Browser editing pane both
share the same editing functionality. The editor uses standard Windows
editing commands and has special features that make working with Java
files easier. For example, the editor can automatically indent or unindent
after braces and can check delimiters.

In addition, the source editor can display keywords, preprocessor
directives, and comments in special font styles and colors. This technique
helps track errors in source code while you are editing. For example, an
unmatched comment (/* without a matching */) turns a large part of the
code a different color, making it obvious where the problem lies. Also,
keywords and preprocessor directives are easier to spot when they are in a
different color or font style. Misspelled keywords can be caught
immediately when they remain displayed in the default font.

Source windows are an integral part of the Visual Cafe environment and
work together with other Visual Cafe windows to make application
development easier. For example, Visual Cafe automatically saves all files
open in Source windows when you rebuild your project. During
compilation, error messages are displayed in the Messages window; when
you double-click on an error message, Visual Cafe opens a Source window
on the corresponding source file, if necessary, and then jumps to the line
in the source code that caused the error.
4-24

Using the Source Editor
Correcting your source code

If there are syntax errors in your source code, Visual Cafe flags them in the
Messages window after a compile. You can easily navigate to each error
directly from the Messages window.

To go directly to a syntax error from the Messages window:

1 From the Window menu, choose Messages to bring the Messages
window to the front.

2 Double-click on any error message to go to that error.

The file containing the error opens at the offending line within a Source
window. Once the file opens, you can work on your source code.

Viewing a component’s Java source code

You can open a component’s Java source file to view the component’s
behavior.

To view a component’s Java source code:

Do either of the following:
■ Click on the class you want to view
■ In the Form Designer, double-click on the component.

The source code appears in the Source Pane.

Enhancing an object’s Java source code

With Visual Cafe’s extensive Component Library, you can create many
applets and applications without writing any Java Code. However, there
may be specific behaviors that require custom code to be added to the
Visual Cafe source file.

You may want to add or modify an object’s Java code to:
■ add event behavior
■ perform exception handling
■ implement runtime security for applications
■ extend a method

Before you add custom code, you should create your project and use
Visual Cafe’s powerful visual tools to create your forms, applets, menu
4-25

Chapter 4: Working with Java Source Code
bars, and components. After you add the objects to your project, arrange
components in the Form Designer, test run the forms, and modify the look
of individual components with the Property List.

When you are visually satisfied with your project, you can then add any
necessary code enhancements using the Source window or Class Browser.

Caution: Visual Cafe only maintains the code that it automatically
generates. This means that when you add code to an object and later
delete the object from the form or project, only the automatically generated
code is removed during the object deletion. You must edit the appropriate
Java source files to remove your own code references.

To modify a component’s source code:

1 Do either of the following:
■ In the Form Designer, double-click the component.
■ Select the component in the Source window or Form Designer,

then choose Edit Source from the pop-up menu.

2 In the Source window, add your custom code to the file.

Binding code to a form or component

Every form and component has a set of events that users can trigger at
runtime. To bind code to an event, you create an event method in the
source file and add custom code or use the Interaction Wizard. When the
event occurs, the code in your event method executes.

To bind code to a form or component:

1 In the Form Designer, open the Source window for the object using
either of these methods:
■ Double-click on the appropriate component or on the form

background.
■ Select an object and choose Edit Open Source from the Object

menu.

2 In the Source window, select the event that you want to bind to from
the Event/Method drop-down list.

3 The method template is added to the source file. The cursor insertion
point is positioned inside the template. Code is also added to the
4-26

Using the Source Editor
HandlerEvent method so that when an event occurs in the object the
code block get executed.

4 Enter the appropriate code into the method template.

Binding code to a menu command

Code can be bound to a menu item just as it can be bound to form or
component. Menu items respond to one event, Action. This event occurs
when the user selects the menu command.

To bind code to a menu command:

1 Open the menu bar in the Menu Editor.

2 Select the menu item.

3 Choose Edit Source from the pop-up menu.

4 In the Source window, select the onAction event from the Event/
Method drop-down list.

5 Add the appropriate Java code to the event code block.

Programming hot keys

You can configure buttons to accept keyboard input, such as CONTROL+C.
When certain keys are pressed, it would be the same as clicking the
button. Here is a code sample:

/*This simple extension of the java.awt.Frame class contains all
the elements necessary to act as the main window of an
application.*/

import java.awt.*;

public class Frame1 extends Frame

{

public Frame1()

{

// This code is automatically generated by Visual Cafe

// when you add components to the visual environment.

// It instantiates and initializes the components. To

// modify the code, only use code syntax that matches

// what Visual Cafe can generate, or Visual Cafe

// may be unable to back parse your Java file into

// its visual environment.

//{{INIT_CONTROLS
4-27

Chapter 4: Working with Java Source Code
setLayout(null);

setVisible(false);

setSize(insets().left + insets().right + 405,insets().top +
insets().bottom + 305);

openFileDialog1 = new java.awt.FileDialog(this);

openFileDialog1.setMode(FileDialog.LOAD);

openFileDialog1.setTitle("Open");

//$$ openFileDialog1.move(36,276);

setTitle("A Basic Application");

//}}

//{{INIT_MENUS

mainMenuBar = new java.awt.MenuBar();

menu1 = new java.awt.Menu("File");

miNew = new java.awt.MenuItem("New"); menu1.add(miNew);

miOpen = new java.awt.MenuItem("Open..."); menu1.add(miOpen);

miSave = new java.awt.MenuItem("Save"); menu1.add(miSave);

miSaveAs = new java.awt.MenuItem("Save As...");
menu1.add(miSaveAs);

menu1.addSeparator();

miExit = new java.awt.MenuItem("Exit"); menu1.add(miExit);

mainMenuBar.add(menu1);

menu2 = new java.awt.Menu("Edit");

miCut = new java.awt.MenuItem("Cut"); menu2.add(miCut);

miCopy = new java.awt.MenuItem("Copy"); menu2.add(miCopy);

miPaste = new java.awt.MenuItem("Paste"); menu2.add(miPaste);

mainMenuBar.add(menu2);

menu3 = new java.awt.Menu("Help");

mainMenuBar.setHelpMenu(menu3);

miAbout = new java.awt.MenuItem("About..");
menu3.add(miAbout);

mainMenuBar.add(menu3);setMenuBar(mainMenuBar);

//$$ mainMenuBar.move(4,277);

//}}

//{{REGISTER_LISTENERS

SymWindow lSymWindow = new SymWindow();

addWindowListener(lSymWindow);
4-28

Using the Source Editor
SymAction lSymAction = new SymAction();

miOpen.addActionListener(lSymAction);

miAbout.addActionListener(lSymAction);

miExit.addActionListener(lSymAction);

SymKey lSymKey = new SymKey();

addKeyListener(lSymKey);

//}}

}

public Frame1(String title)

{

this();

setTitle(title);

}

public synchronized void show()

{

move(50, 50);

super.show();

}

static public void main(String args[]) {

(new Frame1()).show();

}

public void addNotify()

{

Dimension d = etSize();

super.addNotify();

if (fComponentsAdjusted)

return;

// Adjust components according to the insets

setSize(insets().left + insets().right + d.width,
insets().top + insets().bottom + d.height);

Component components[] = getComponents();

for (int i = 0; i < components.length; i++) {

Point p = components[i].getLocation();

p.translate(insets().left, insets().top);

components[i].setLocation(p);

}

fComponentsAdjusted = true;

}

//Used for addNotify check.
4-29

Chapter 4: Working with Java Source Code
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS

java.awt.FileDialog openFileDialog1; //}}

//{{DECLARE_MENUS

java.awt.MenuBar mainMenuBar;

java.awt.Menu menu1;

java.awt.MenuItem miNew;

java.awt.MenuItem miOpen;

java.awt.MenuItem miSave;

java.awt.MenuItem miSaveAs;

java.awt.MenuItem miExit;

java.awt.Menu menu2;

java.awt.MenuItem miCut;

java.awt.MenuItem miCopy;

java.awt.MenuItem miPaste;

java.awt.Menu menu3;

java.awt.MenuItem miAbout;

//}}

class SymWindow extends java.awt.event.WindowAdapter

{

public void windowClosing(java.awt.event.WindowEvent event)

{

Object object = event.getSource();

if (object == Frame1.this)

Frame1_WindowClosing(event);

}

}

void Frame1_WindowClosing(java.awt.event.WindowEvent event)

{

hide(); // hide the Frame

dispose(); // free the system resources

System.exit(0); // close the application

}

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent event)
4-30

Using the Source Editor
{

Object object = event.getSource();

if (object == miOpen)

miOpen_Action(event);

else if (object == miAbout)

miAbout_Action(event);

else if (object == miExit

miExit_Action(event);

}

}

void miAbout_Action(java.awt.event.ActionEvent event)

{

//{{CONNECTION

// Action from About Create and show as modal

(new AboutDialog(this, true)).show();

//}}

}

void miExit_Action(java.awt.event.ActionEvent event)

{

//{{CONNECTION

// Action from Exit Create and show as modal

(new QuitDialog(this, true)).show();

//}}

}

void miOpen_Action(java.awt.event.ActionEvent event)

{

//{{CONNECTION

// Action from Open... Show the OpenFileDialog
openFileDialog1.show();

//}}

}

class SymKey extends java.awt.event.KeyAdapter

{

public void keyPressed(java.awt.event.KeyEvent event)

{

Object object = event.getSource();
4-31

Chapter 4: Working with Java Source Code
if (object == Frame1.this)

Frame1_KeyPress(event);

}

}

void Frame1_KeyPress(java.awt.event.KeyEvent event)

{

// to do: code goes here.

System.out.println("Button Key Press :" +
event.getKeyText(event.getKeyCode()));

}

}

Moving around in a file with the Search menu

You can move the insertion point in a file by using the mouse or keyboard
in the standard Windows text-editing manner. In addition, you can jump to
specific points in a file using commands from the Search menu.

The following are common tasks that you do while editing. Other "Go To"
functionality is available on the Search menu.

Jumping to a matching delimiter

A common problem in source code is parentheses (()), brackets ([]), and
braces ({}) that don’t match. To find the other half of a pair of these
delimiters, position the insertion point in front of one of the delimiters and
choose Search, then Go to Matching Delimiter. The insertion point moves
to the other half of the pair.

Delimiter checking can also be done automatically using the source format
options. The Source Editor looks for any parenthesis, bracket, or brace,
including text in strings and comments.

To jump to a specific line:

1 From the Search menu, choose Go To Line.

The Go To Line dialog box appears.

2 Type the line number in the text box and click OK.

The editor moves the insertion point to the beginning of the specified
line.
4-32

Using the Source Editor
To jump to a function:

1 From the Search menu, choose Go to Function.

The Go to Function dialog box appears.

2 Select a function name from the scrolling list or type in a function
name.

The insertion point then moves to the beginning of the specified
function.

Searching through and comparing multiple files

The global find feature of the Source Editor provides a powerful means of
locating a string in any set of files.

To search for a string in multiple files:

From the Search menu, choose Find in Files. You can choose to search:
■ All source files in the current project
■ All files listed in the Search window (which opens after the first

search)
■ All files matching the criteria you specify, including filename,

directory, date, time, and file attributes

To compare two files:

From the Search menu, choose Compare Files.

Adding a method from the Source window

Event handlers and other source code can be added directly in the Source
window.

To add a method from the Source window:

1 Open the Source window for the form.

2 In the Source window, select an event handler from the Events/
Methods drop-down list.

The appropriate event handler logic is added automatically to the
source code.

3 Replace the placeholder text "// to do: place event handler code here"
with appropriate Java code.

4 Save the file.
4-33

Chapter 4: Working with Java Source Code
Enhancing Java code for a component

With Visual Cafe’s extensive Component Library, you can create many
applets and applications without writing any Java code. However, there
may be specific behaviors that require custom code to be added to the
Visual Cafe source file.

You may want to add or modify Java code for a component to:
■ add event behavior
■ perform exception handling
■ implement runtime security for applications
■ extend a method

Before you add custom code, you should create your project and use
Visual Cafe’s powerful visual tools to create your forms. You can add
components to your project, arrange components in the Form Designer,
modify the look of individual components with the Property List, and add
interactions between components or a component and itself with the
Interaction Wizard. It is a good idea to do as much as you can with the
Visual Cafe tools before you add your custom code.

When you are visually satisfied with your project, you can then add any
necessary code enhancements using the Source window or Class Browser.

Caution: Visual Cafe only maintains the code that it automatically
generates. This means that when you add code to an component and later
delete the component from the form or project, only the automatically
generated code is removed during the component deletion. You must edit
the appropriate Java source files to remove your own code references.

Specifying the search file type and location

You can specify the search criteria, the type of files to search, and the files
location on the Name & Location tab of the Find in Files dialog box.
4-34

Using the Source Editor
To specify search criteria:

1 Select the appropriate search criteria options at the bottom of the
window.

2 Specify the search pattern in the Find what field. The drop-down list
displays the previous sixteen search strings. If Regular expression is
selected, you can use the more button to select valid regular
expression characters.

3 Specify the types of files to search by entering file extensions or
selecting extensions from the drop-down list.

4 Select the scope of the search. You can specify a folder, the current
project, or the last set of files found in a previous search.

5 To expand a search into subfolders, select the Search subfolders
option.

Specifying the file search path

From the Directories tab of the Project Options dialog box, you can add
and remove directories that Visual Cafe uses to locate source and class files
and control where Visual Cafe puts compiler output files. This view
changes the option set for the Debug or Final release type. See “Specifying
whether builds are debug or final” on page 3-39, for more information.

You can also set class path information for the entire Visual Cafe
environment. Remember that Visual Cafe does not inherit Windows class
path information unless it is set up to do so.

To Do

Search using regular
expressions

Choose what you want to search for from
the pop-up menu of regular expressions.
This option is the default.

Search with wildcard symbol Select the Match Wildcards option.

Search with exact case
matching

Select the Match case option.

Search for an exact match to a
whole word

Select the Match whole word only option.
This option limits matches to files that
contain the search criteria string preceded
and followed by a space, tab, or punctuation
character, or search string that start or end a
line.
4-35

Chapter 4: Working with Java Source Code
To access the Directories view:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Directories tab.

Specifying source file search paths

The source search path applies to Java source files and any text file that
can be opened in the Source window.

Note: You can set the source search path for the entire Visual Cafe
environment from the Environment Options dialog box and with the
javainc statement in the \VisualCafe\Bin\sc.ini file.

To specify a source file search path:

1 Go to the Directories view of the Project Options dialog box.

2 Choose Source files in the Show directories field.

A list of directories that can contain source files appears. The directory
order affects the search order: the topmost directory is the first to be
searched. The default setting, the project directory, does not appear in
the list; it is the first directory in the search order.

3 Modify the list as needed:
■ To change the order that directories are searched, select a directory

and move it with the Up Arrow and Down Arrow buttons.
■ To delete a directory from the list, select the directory and click

Delete.
■ To add a directory to the list, select the blank entry (marked by an

empty box) at the bottom of the list and type the directory name,
including the full path. Or click the New button (located above the
text box), then select a directory by clicking the Browse button that
appears in the field. You can also use the New button to insert a
new entry above the selected entry.

4 Click OK.

The change takes effect immediately.
4-36

Adding packages to Visual Cafe
Setting Advanced Search Criteria

You specify file attribute and modification search criteria from the Find in
Files dialog box’s Advanced tab.

Set attribute criteria by enabling the appropriate attribute options. This
narrows the search scope.

File attributes are Archive, Read Only, System, and Hidden.

Note: The Attributes checkboxes are 3-state checkboxes. If an attribute is
enabled, then files with the given attribute are searched. If an attribute is
disabled, then files without the given attribute are searched. If an attribute
is grayed, the attribute is ignored when Visual Cafe decides which files to
search.

Specify modification criteria by selecting the Files created or modified
option.

Set the appropriate values in the Date and Time fields. The field value
“ignore” disables the associated data or time field.

Date: Select Ignore to ignore the date. Otherwise, specify a date and one of
the options. For instance, specify “Is” and 11/6/94 to search files last
modified on November 6, 1994, or “Greater” and 4/1/90 to search files last
modified after April 1, 1990.

Time: Select Ignore to ignore the time. Otherwise, specify a time and one
of the options.

Adding packages to Visual Cafe
The standard Java packages and the Symantec Visual Cafe packages are
available to you as you develop Java programs in the Visual Cafe
environment. You can also make other packages available to Visual Cafe
projects by adding them to the Visual Cafe class path. For example, you
could add third-party or your own packages containing components or
utilities. You can set the class path for a project or for the Visual Cafe
environment.

To add packages to Visual Cafe, the package needs to be in the classpath.
Remember to keep the directory structure of your package intact, and
4-37

Chapter 4: Working with Java Source Code
make sure that your file names use the same upper and lower case letters,
exactly as they were before copying the package.

If you add a Java import statement or use part of the new package in your
Java source code, the package appears in the Packages view.

If you declare your application or applet as a part of another package, you
must specify the output directory in the Package Destination line
Directories tab of the Project options window.

Using the Package view

For Visual Cafe version 2.0, Packages view supports drag and drop as well
as package creation. Click on the Packages tab to start using these
sophisticated features.

Using drag-and-drop

In Packages view, you can drag and drop files between packages, drag
files from a file source—like the Windows Explorer—and to add them to a
project, and you can drag files to the trash to remove them from the
project. You can also press Delete to remove files from a project. Any of
these actions can be undone.

Creating packages

To create a new package you choose Package from the Insert menu. When
you choose this command a new package is created and added to the end
of the list. The name it made is immediately editable. If necessary, the list is
automatically scrolled to display the new package.

The Package Group command in the Insert menu is only available in
Packages view. It replaces the Group command which is available from the
Object Library window.

When you create a new package a placeholder is created into which you
can drag files. If you don’t add any files to the package, the package
placeholder remains accessible in Packages view while the project is open.
When the project is closed, the reference is deleted and when you reopen
the project, the empty package is no longer in the list.
4-38

Working with events
Using the Context menu

The following context menu is available in Package view:

Tip: The default view is always on top. You can change the default view
by right-clicking on the tab, then selecting the make-default option at the
bottom of the pop-up window.

You can also make a view the only view in the Project window by
selecting the options with checkmarks. This action removes the checkmark
and the particular view from the Project window. To restore a particular
view to the Project window, right-click any existing tab and select the view
you want. The view is restored.

Working with events
An event is an asynchronous signal that a source program element sends to
target program element to notify the target that some specific behavior has
occurred. Java defines the events it supports in the Events class, which
extends the Object class.

Using events with your own components

In Visual Cafe, you can usually route an event to a target component and
specify the action to be taken, via the Interaction Wizard.

Some Visual Cafe components require you to add code to your source
code file. To handle a standard event in a way unique for a component,
override the action() method in your target component. Pass that standard
event to action() instead of eventHandler() in your target
component.

A component does not need to handle all events passed to it. Events
retrieved but not handled by a target component are passed to the
component’s parent object. Events eventually pass to the component class,
which discards events it doesn’t recognize.

Adding an event to a component

Event-handler code is automatically added to a component’s source when
you add an event to a component.
4-39

Chapter 4: Working with Java Source Code
Visual Cafe changes the source code in four ways when you add an event
handler from the Source window:
■ First, Visual Cafe generates an adapter or listener implementation for

the event. If one was already generated, it is used with the new
interaction.

■ Second, in the adapter/listener class, Visual Cafe generates a check for
the object requesting the handling of the event and a call to the event
handler.

■ Third, Visual Cafe instantiates this adapter/listener class and generates
the registration (specifically, object.addtypeListener or
object.addtypeAdapter) after the comment tag REGISTER_LISTENERS.
If the adapter/listener class has already been instantiated, it is used.

■ Fourth, an event handler is generated. If the event handler already
exists, it is used.

If instead you use the Interaction Wizard to create an interaction, Visual
Cafe makes the four modifications mentioned previously, plus the
interaction specified in the wizard is generated in the event handler. See
“Working with the Interaction wizard” on page 4-41 for more information.

To add an event handler from the Source window:

1 In the Objects drop-down list of the Source window, choose a
component.

2 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that is not bold, it is created for you.

3 In the event handler, replace the placeholder text // to do: code goes
here with appropriate Java code.

Editing an event handler

You can conveniently edit event handlers from the Class Browser and
Source window.

To edit an event handler from the Class Browser
■ Select a class in the Classes pane then a member in the Members pane,

and edit the member in the bottom Source pane. See “Finding a class”
on page 4-6 for more information.
4-40

Working with the Interaction wizard
To edit an event handler in the Source window

1 In the Objects drop-down list of the Source window, choose an object.

2 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that is not bold, it is created for you.

3 Edit the Java code.

Deleting an event handler

Deleting an event-handler is the same as deleting an interaction. See Using
the Interaction Wizard for more information.

Editing event methods

There are several ways to access an object’s Java source code for event
editing.

To edit event methods from the Form Designer:

1 Do either of the following:
■ Double-click the form background or a component.
■ Select the object and from the Object menu, choose Edit Source.

2 From the Source window Events drop-down list, select the event that
you want to edit.

3 Enhance the code block as needed.

To edit event methods from the Class Browser:

1 Select the object class that you want to enhance.

2 In the Members pane, double-click on the event that you want to edit.

3 In the editing pane, enhance the code block as needed.

Working with the Interaction wizard
One of the most powerful features of Visual Cafe is the ability to quickly
build a relationship between two components. Anytime a button is pushed,
or a box is enabled, a program action called an event is generated. To link
those events to a corresponding action in your program, you need an
event handler that responds to that event.
4-41

Chapter 4: Working with Java Source Code
In Visual Cafe, this event handler is called an interaction. The Interaction
Wizard lets you graphically build relationships between components, or
between a component and itself. For example, double-clicking an item in a
list box could remove the item from the list box and add it to another list
box. Also, you can create an interaction on an animation component
where a mouse click anywhere within the boundaries of a component
starts an animation in that component; another click ends the animation. In
a slide show, a button click could cause the next image to be displayed.
Visual Cafe automatically generates the necessary code for the specified
relationship.I

Changes between the JDK 1.0 and 1.1 event models

In the Visual Cafe 1.0, the key elements of an interaction are the trigger
event and the action component. The trigger event is the originator of the
interaction and is associated with a component. The trigger event
determines when the interaction happens. The action component is the
component on which a defined “action” happens. The action specifies
what to do when a condition is met.

For example, you can connect a button (the trigger component) to a text
box (the action component) so that when the user clicks the button (the
trigger event), the associated text box is enabled for data input (the action).

An interaction does not have to contain two components. You can create
an interaction where the trigger and action component are the same.
Interactions are implemented as methods in the component’s container
class.

In the 1.1 event model, when an interaction is created, code for the event
handler, listener registration, and adapter/listener class with a call is
automatically generated. If you want to delete an interaction, you must
manually delete all of this code.

Visual Cafe changes the source code in five ways when you create an
interaction:

1 Visual Cafe generates an adapter or listener implementation for the
event. If one was already generated, it is used with the new
interaction.

2 In the adapter/listener class, Visual Cafe generates a check for the
object requesting the handling of the event and a call to the event
handler.
4-42

Working with the Interaction wizard
3 Visual Cafe instantiates this adapter/listener class and generates the
registration (specifically, object.addtypeListener or
object.addtypeAdapter) after the REGISTER_LISTENERS tag. If the
adapter/listener class has already been instantiated, it is used.

4 An event handler is generated. If the event handler already exists, it is
used.

5 The interaction specified in the wizard is generated in the event
handler.

For example, if you have a button, called NextButton, that displays the
next image of a slide show, called VacationSlides, the event handler could
look like this and appear toward the end of the Java source file:

void NextButton_Action(java.awt.event.ActionEvent event)

{

// to do: code goes here.

//{{CONNECTION

// Go to the SlideShow's next image

VacationSlides.nextImage();

//}}

}

More toward the middle of the Java source file is the listener registration:

//{{REGISTER_LISTENERS

SymAction lSymAction = new SymAction();

NextButton.addActionListener(lSymAction);

//}}

Toward the end of the Java source file is the adapter/listener class with a
call to the event handler:

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent
event)

{

Object object = event.getSource();

if (object == NextButton)

NextButton_Action(event);

}

}

4-43

Chapter 4: Working with Java Source Code
Then, if you add an interaction between VacationSlides and a Label
component, Visual Cafe generates a new event handler for VacationSlides,
and the listener registration code changes:

//{{REGISTER_LISTENERS

SymAction lSymAction = new SymAction();

NextButton.addActionListener(lSymAction);

VacationSlides.addActionListener(lSymAction);

//}}

And the adapter/listener class code changes:

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent
event)

{

Object object = event.getSource();

if (object == NextButton)

NextButton_Action(event);

else if (object == VacationSlides)

VacationSlides_SlideChanged(event);

}

}

Creating an interaction

With the Interaction Wizard, you can create an interaction:
■ by connecting two components on a form in the Form Designer
■ by connecting two components in the Project window
■ by connecting two components across the Project window and Form

Designer (such as a button in the Form Designer and a dialog
component in the Project window)

■ by connecting a component to itself
■ by connecting a form and a component contained by the form

Note: The components must be within the same project.

To create an interaction relationship between two components:

1 In the Form Designer or Project window, select the trigger component
by using one of these methods:
4-44

Working with the Interaction wizard
■ Right-click the component and select Add Interaction.
■ Click the Interaction tool icon, then click the trigger component.

2 Drag a line from the trigger component to the action component
within the same project.

The action component is highlighted to help you identify which
component you selected. If a component will not highlight, the
interaction could be inappropriate.
■ To connect a component to itself, double-click the component.

After you release the mouse button, the Interaction Wizard appears.

Tip: Before you release the mouse button, you can press ESCAPE
to cancel the interaction, or move the interaction line to another
component.

3 In the Interaction Wizard, verify that the component names are correct.

The trigger component should appear in the Start an interaction field
title; if it is wrong, you need to start over.

The action component should appear in the Select the item you want
to interact with field; if it is wrong, choose another component.

4 In the Start an interaction field, select the event that activates the
interaction.

5 In the Choose what you want to happen field, select an action to
invoke when the interaction event occurs.
■ If the action takes no parameters, the interaction is finished.
■ If the action takes parameters, the Next button is enabled. When

you click Next, a second window displays allowing you to fill in
those parameters.

6 In the second window, specify the interaction condition.

Tip: A variable must be of the type listed for the second radio
button, A type constant or expression, for it to appear. If you
define a variable of this type and the variable is in scope, it will
appear in the variable list.

7 Click Finish.

In the Java source file, code is generated for the call handler, listener
registration, and adapter/listener class.

In the source code, Visual Cafe performs five edits:
4-45

Chapter 4: Working with Java Source Code
■ First, Visual Cafe generates an adapter or listener implementation
for the event. If one was already generated, it is used with the new
interaction.

■ Second, in the adapter/listener class, Visual Cafe generates a check
for the object requesting the handling of the event and a call to the
event handler.

■ Third, Visual Cafe instantiates this adapter/listener class and
generates the registration (specifically, object.addtypeListener or
object.addtypeAdapter) after the REGISTER_LISTENERS tag. If the
adapter/listener class has already been instantiated, it is used.

■ Fourth, an event handler is generated. If the event handler already
exists, it is used.

■ Fifth, the interaction specified in the wizard is generated in the
event handler.

To connect components with the Interaction Wizard:

1 Select a component in the Form Designer or Project window.

2 Choose Object, then Add Interaction.

3 Complete the Interaction Wizard as described in the previous
procedures.

Changing an existing interaction

Interactions are implemented as methods in the container class of a
component. The interaction methods are called an event handlers.

To change an existing interaction:

1 Make the project active by clicking the Project window.

2 Choose Window, then Class Browser

You should see a listing of project classes in the Classes pane.

Note: If the class you want is not displayed in the pane, you might
need to change what classes are displayed by choosing Classes,
then Options.

3 In the Classes list, click the container class that contains the trigger
component.

In the Members pane, you should see a list of methods and variables
associated with the container class.
4-46

Working with the Interaction wizard
4 Identify the appropriate event handler. Event handlers are named
using a combination of the component name and the trigger event; for
example, NextButton_Action .

Note: If you rename a component after an event handler is
created, the method is not renamed.

5 Display the method’s source code by clicking the event handler. The
interaction code is marked by the //{{CONNECTION comment and a
comment that explains the interaction.

For example:

void NextButton_Action(java.awt.event.ActionEvent event)

{

// to do: code goes here.

//{{CONNECTION

// Go to the SlideShow's next image

VacationSlides.nextImage();

//}}

}

6 In the editing pane, make any source code changes you need.

Deleting an interaction

To delete an interaction, you delete the interaction in the event handler, as
well as the applicable portions of the listener registration and the event
handler call in the adapter/listener class.

For example, if you have a button, called NextButton, that displays the
next image of a slide show, called VacationSlides, the event handler
could look like this and appear toward the end of the Java source file:

void NextButton_Action(java.awt.event.ActionEvent event)

{

// to do: code goes here.

//{{CONNECTION

// Go to the SlideShow's next image

VacationSlides.nextImage();

//}}

}

More toward the middle of the Java source file would be the listener
registration:
4-47

Chapter 4: Working with Java Source Code
//{{REGISTER_LISTENERS

SymAction lSymAction = new SymAction();

NextButton.addActionListener(lSymAction);

//}}

Toward the end of the Java source file would be the adapter/listener class
with a call to the event handler:

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent
event)

{

Object object = event.getSource();

if (object == NextButton)

NextButton_Action(event);

}

}

If you then add an interaction between VacationSlides and a Label
component, Visual Cafe would generate a new event handler for
VacationSlides, and the listener registration code would change:

//{{REGISTER_LISTENERS

SymAction lSymAction = new SymAction();

NextButton.addActionListener(lSymAction);

VacationSlides.addActionListener(lSymAction);

//}}

And the adapter/listener class code would change:

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent
event)

{

Object object = event.getSource();

if (object == NextButton)

NextButton_Action(event);

else if (object == VacationSlides)

VacationSlides_SlideChanged(event);

}

}

4-48

Working with the Interaction wizard
To delete the event handler in the Class Browser:

1 Make the project active by moving focus to the project’s Project
window.

2 From the Window menu, choose Class Browser.

A list of project classes appears in the Classes pane.

3 In the Classes pane, click the container class that contains the trigger
component.

In the Members pane is a list of methods associated with the container
class.

Note: If the class you want is not displayed in the pane, you might
need to change what classes are displayed by choosing Classes,
then Options.

4 Select the appropriate event handler for the interaction. An event
handler is named using a combination of the component’s name and
the trigger event; for example, NextButton_Action.

Note: If you rename a component after an event handler is
created, the method is not renamed.

5 Delete the interaction in the event handler code. Or delete the entire
event handler if it only handles one interaction.
■ To delete the event handler, right-click the event handler and

choose Delete Member.

To delete the event handler in the Source window:

1 Open the source file containing the event handler in the Source
window.

2 In the Objects drop-down list of the Source window, choose an object.

3 In the Event/Methods drop-down list, choose the event.

Existing events and methods are shown in bold.

4 Delete the interaction in the event handler code. Or delete the entire
event handler if it only handles one interaction.

To delete the applicable portions of the listener registration and the call in
the adapter/listener class:

1 Open the Source window.

2 Delete the applicable portions of code.
4-49

Chapter 4: Working with Java Source Code
Consult a Java book for more information. In general, these are the
edits you need to make:
■ In the adapter/listener class, if there is only one call to an event

handler, delete the adapter/listener class. If there is more than one
call to an event handler, delete the check for the object requesting
the handling of the event and the call to the event handler. This is
an if or else if statement; make sure the code you are left with is
syntactically correct.

■ In the listener registration (marked by the REGISTER_LISTENERS
comment), delete the object.addtypeListener or
object.addtypeAdapter call for that component, if the listener
registration is not used by another event tied to that component.

Using the Classes, and Hierarchy Editor menus
This reference section provides detailed descriptions of the commands in
Visual Cafe’s Window menu when one or more of these tools is in use. The
Window menu contains commands to help manage projects that you open
in Visual Cafe’s Class Browser and Hierarchy Editor windows.

Using the Classes menu

The following options are available from the Visual Cafe Classes menu.
This menu is available when the Class Browser is active. Use the Insert
menu or pop-up menus in the Class Browser panes to add new classes and
members.

Using the Edit Class command

Use this option to open the Edit Class Wizard, where you can change the
definition of a class or interface.

Using the Member Attributes command

Use this option to display the Member Attributes dialog box, where you
can change the member’s access type for the selected method or data
element.
4-50

Using the Classes, and Hierarchy Editor menus
Using the Delete Member command

Use this command to delete the selected member from its class. If the
selected member is a variable, like “Button1” , this command removes
the associated visual object.

Using the Go to Source command

Use this command to open the class’s Java file in the Source window.

Using the Options command

Use this command to open the Class Options dialog box, where you can
expand or refine the elements in the class listing and define how classes or
members are sorted.

Using the Hierarchy Editor right-click menu

When you right mouse click an object in the Project window, Visual Cafe
displays a pop-up menu with these commands:

Using the Class Attributes command

Use this command to open the Edit Class Wizard, where you can change
the definition of a class or interface.

Using the Remove Inheritance command

This command is enabled when you select the line connecting two classes
in the window.

The line represents a connection between two classes. When you delete
the connection, the inheritance changes such that the object now extends
java.lang.object .

Using the Go to Source command

Use this command to open the Source window with focus on the selected
package or class.
4-51

Chapter 4: Working with Java Source Code
Using the View Imports command

In addition to the local classes, the Hierarchy Editor displays the classes
that are imported into the project.

Using Macros in Visual Cafe
As you use the Source editor to create and edit program code, you may
find yourself performing some tasks again and again. You can automate
the task by turning on the Macro Recorder and having it create a macro for
you.

Record macro Choose this command before beginning a task in an editing
window. Your keystrokes and mouse actions are then recorded. After
completing the task, choose Stop Recording from the Macro Menu. You
can save the macro for later use.

Play After creating a macro, repeat the task you recorded by playing the
macro.

Recording and playing the Default Macro

Visual Cafe lets you record a single default macro and then use it
repeatedly throughout your project. You might want to use this feature if
you only need a single macro to do a repetitive task.

To record the default macro:

1 From the Tools menu, choose Macro, then Record Macro.

A dialog box appears and asks if you want to write over the existing
default macro.

2 Click OK.

3 Perform the necessary actions that you want recorded by the Macro
editor.

4 When you are done creating your macro, choose Tools, Macro, then
Stop Recording.

The macro is recorded, but is saved only in memory. See the next
session on how to save macros for later use.

To play the default macro:

From the Tools menu, choose Macro, then Play.
4-52

Using Macros in Visual Cafe
Saving the default macro and using it with other macros

After you have recorded the default macro, you can save it for later use by
naming it and saving it to your hard drive.

To save the default macro for later use:

1 Record the macro. See the previous section, “Recording and playing
the default macro.”

2 Choose Tools, Macro, then ScriptMaker.

In the ScriptMaker dialog box, the <default> entry must be highlighted.

3 Click the Rename... button.

The Rename/Duplicate Macro dialog box appears.

4 In the Rename/Duplicate Macro dialog box, enter a name for the
macro and a filename.

5 Click the OK button.

Using recorded macros other than the default macro

To run a macro other than the default one:

Choose Tools, then Macro, then ScriptMaker. Select the macro you
want to run from the menu.

Using the ScriptMaker dialog box

You can use the ScriptMaker dialog box to copy and rename macros.

Choose Tools, then Record Macro command to record your editing
keystrokes. The file is saved as the <DEFAULT> macro. You can then use
this dialog box to duplicate the macro and name the duplicate for saving.

You cannot rename the default script; you must duplicate it first. If
DEFAULT.MAC is deleted from disk, Visual Cafe Basic creates a stub file
when it starts up.

Macros

Lists existing macros that are associated with the current project.
ScriptMaker macro files have the extension .MAC. The default macro is
highlighted by default. Click a macro to select it. Double-click to open a
macro in an editor.
4-53

Chapter 4: Working with Java Source Code
Properties

The display name and file name of the selected macro.

Display in Menu

Select this option if you want the current (highlighted) macro to appear by
name at the bottom of the Tools Macro menu.

Reorder Commands

Allows you to change the order of the macros which appear in the Macro
menu. Click the up arrow to move the selected macro up in the menu;
click the down arrow to move it down in the menu. The default macro
always stays at the top of the list.

Done Button

Click Done to save all changes to the project’s macros.

Edit Button

Click Edit to open a macro in an editor.

Rename Button

Click Rename to rename the current macro. The Rename/Duplicate Macro
dialog box appears. Rename is not active when the default macro is
highlighted.

Duplicate Button

Click Duplicate to create a copy of the current macro. The Rename/
Duplicate Macro dialog box appears.

Delete Button

Click Delete to delete the current macro. Delete is not active when the
default macro is highlighted.
4-54

C H A P T E R 5
Including Visual
Components

Visual Cafe makes it much easier to design your graphical user interface
(GUI) by allowing you to visually lay out your applets and windows. To
design your GUI, you must first create a Visual Cafe project. Then you can:
■ Add components, such as windows, dialog boxes, text, buttons, and

graphics, to the project. You can add components to a project from the
Component Library or Palette.

■ Open top-level components, or forms, in the Form Designer, then
visually arrange components on the form. You can drop components
into the Project window or directly into the Form Designer, and then
arrange them in the Form Designer.

■ Set component properties, such as color and text, in the Property List.
These changes are immediately reflected in the Form Designer.

■ Create interactions between components. For example, if a user clicks
a Clear button, a text field clears.

What are Visual Cafe forms?
Forms are the basis for creating a user interface to your applets and
applications. Forms can be windows that display information and can
receive user input. A form can contain labels that display text, or can
contain components that provide interaction with the program. Some
examples of components are:
■ Check boxes
■ Radio buttons
5-1

Chapter 5: Including Visual Components
■ Text boxes
■ Scroll bars

You can also use forms as containers for items that are not visible
components in a user interface. For example, you can have a form in an
application that serves as a container for other components that will be
used in other programs. Or, you can have a container containing code that
handles events like mouse interactions.

Understanding the container class
Some components can contain other components, such as text, buttons,
graphics, charts, and so on. These components are called containers.

In general, while components are independent objects, there is a certain
parent and child relationship that exists between containers and other
components.

Java defines containers as components that hold any number of
components, including other containers. Containers hold and organize
your components, but they also contain code for event handling and many
essential things such as controlling the cursor image and the program’s
icon. All containers allow for operations such as adding, removing, and
painting their contents, or components. Containers allow for the grouping
of related components together and treating them as a single unit,
simplifying the amount of programming you have to do.

To better understand the idea of containers, think of all visual components
as children of the form on which they are displayed. Most components
inherit the read-only Parent property, which displays the form. The
placement of visual components is also relative to the Parent form. Visual
components cannot be moved outside the boundaries of the parent.
Moving a form moves the components as well.

The top-level containers, or forms, are Applet, Frame, Window, and some
dialogs. When displayed in the Form Designer, the size of the window is
the bounds of the form.

Other containers are panels, MenuBar, Menu, and some dialogs. These
containers can be contained by a form, but are not forms themselves.
5-2

Understanding the container class
You can use a container in two ways:
■ You can subclass Container if you override all abstract members, but

the Window container typically provides this basic functionality.
■ All Containers inherit Container data members and methods. Any

Container you subclass can call any member it needs, provided you
override that member in your subclass.

In Visual Cafe, applications are built on Frame containers and Applets are
built on Applet containers. The Form Designer window becomes an Applet
or a Frame as selected on the Project window. Other specialized containers
are listed in the following table.

You can build a GUI using Visual Cafe, create an application or an applet
project using the Project window. Depending on what you selected, Visual
Cafe automatically provides you with either a Frame container or an Applet
container as the parent container for your project. Continue by dragging
container and component icons from the Palette to the Form Designer
window as necessary.

You can also build a GUI in project source code, by instantiating a
Container object and all the Component objects you need. Call the
container’s getLayout method to add a layout manager. Then call that
Container object’s Add method to place Component objects into your
Container object. Finally, call the container Show method to make the
container and all components visible.

Container Function

Window A blank modal container that must be set into a Frame.

Frame Extends Window. It uses the BorderLayout manager, supports a
title and menu bars, can be minimized, and must be a parent
container.

Panel Uses a FlowLayout manager, and can be placed inside other
containers including other panels.

Applet A Panel that can be run by another program and supports
multimedia features. Applet containers are parents to applet
programs. Applets cannot be nested.
5-3

Chapter 5: Including Visual Components
Working with basic user interface components
The Java Abstract Window ToolKit, or AWT, is a portable GUI library to
allow you to create visual front ends. This portable GUI library is cross-
platform for developing and running applications and applets.

The AWT supplies many classes for you to develop your Java programs. It
is the crucial link between your Java program and the native GUI of the
operating system. The AWT performs a very high level of abstraction
because there has to be a common denominator in order for your Java
program to be portable across platforms. It is a Java package that can be
used in any Java program by importing java.awt.* using the import
keyword. Visual Cafe does this automatically for you.

In the structure of the AWT, components are added to and then arranged
by layout managers in containers. There are a variety of event handling,
menu, fonts, and graphics classes in addition to components and
containers. The AWT also works well in conjunction with the networking
and threads classes.

Creating component layouts

The Java language provides layouts (or layout managers) which help you
arrange components inside a container, like a form or a panel. Layouts
provide a method of automatically arranging components within a
container so that they display nicely on different platforms, screens, and at
different resolutions. The following table provides an overview of the
layouts.

Layout Description

BorderLayout Arranges the components in a center, north, south,
east, and west orientation.

CardLayout Arranges the components on several cards. Only one
card is visible at a time. This allows you to flip
through the cards.

FlowLayout Arranges buttons from left to right until there is no
more room. This layout has the option of align center,
align left, and align right.

GridLayout Arranges components in definable rows and columns.

GridBagLayout Arranges objects by size and space.
5-4

Working with basic user interface components
The way AWT components actually appear on the screen is determined by
the order in which components are added to the panel that contains them,
and the layout manager that panel is using to display them on the screen.
The layout manager determines and allocates which components within
that panel will be displayed.

Visual Cafe supports all Java layouts, as well as creating your own. You can
add a layout to a form (or panel) by setting the form’s layout property.
Immediately when you change the property, the components inside the
layout are arranged based on their creation order and the specified layout.
You can rearrange components in the layout by dragging and dropping to
the desired location.

Working in the Form Designer

The Form Designer is a separate Visual Cafe window that displays a form.
The window size is the size of your form. Components contained by the
form appear on the form. For example, if you run an applet in a Web
browser, the applet will appear the same size as it does in the Form
Designer window. The components contained by the form appear as
shown in the Form Designer. While working with Visual Cafe, you can
have multiple Form Designer windows open at once—one per form.

The Form Designer uses an integrated Java Virtual Machine to run Java
code at design time. This allows the Form Designer to provide a true what-
you-see-is-what-you-get (WYSIWYG) design environment, including the
accurate representation of complex layouts using the various Java layout
managers. It also allows the Form Designer to run Java components and
5-5

Chapter 5: Including Visual Components
applets at design time so that the effects of an on-screen animation can be
accounted for in the layout design.

Some components can only appear at the top level in the Objects view of
the Project window. These are the Visual Cafe forms, including the Applet,
Frame, Window, and some dialog components. If you look in the
Component Library, the forms provided with Visual Cafe are all in one
Forms group. A form can contain other components, such as text, buttons,
and graphics.

Displaying graphics in the Form Designer

When you have applets that have an image (.gif file) drawn using paint(),
it appears in browsers and in the AppletViewer. However, it may not
appear in the Form Designer.

To have your images display at design time in the Form Designer, use the
ImageViewer component.

Creating Java code

A top-level component corresponds to a Java source file. Visual Cafe
automatically creates the Java code and updates the code as you visually
design your GUI.

The top-level component for an applet is the Applet component. The init
method, which is called by another program (such as a Web browser), is
5-6

Designing a GUI with Visual Cafe
the entry point of the applet. If you use the Basic Applet project template
provided with Visual Cafe, the applet is already set up for you
programmatically.

The top-level component for an application with a GUI is the Frame
component. The main method, usually called from the command line, is
the entry point of the application. If you use the Basic Application template
provided with Visual Cafe, the main window is already set up for you
programmatically.

Other top-level components are the Window component and some dialog
components. When you create a Java program, you can display these top-
level components from an Applet or Frame, for example.

Component is the parent class from which all visual components and
containers extend. This class provides a protocol defining objects that will
possess size and position, can be rendered onto the screen, and can
respond to events.

Component subclasses the set of visual components present on the Visual
Cafe Palette. It also subclasses the container class, which in turn subclasses
specialized containers supporting applets, pop up windows and
applications. Component is an abstract class and can not be instantiated.

With Visual Cafe, you can use a component in two ways:
■ You can subclass Component directly, provided you override all

abstract members.
■ All containers inherit Component data members and methods. Any

visual component you subclass can call any member it needs.

By default, Visual Cafe provides an Applet component for creating applets
and a Frame component for creating applications.

Designing a GUI with Visual Cafe
With Visual Cafe, you can add graphical user interface (GUI) elements to
your applets or applications and define how those elements should interact
with your applet or application.

Every time you drag and drop a visual component onto the form in the
Form Designer, or edit properties for a component using the Property List,
Visual Cafe updates the source file for you.
5-7

Chapter 5: Including Visual Components
In general, to design your graphical user interface (GUI), you follow these
basic steps:

1 Add forms to the project.

2 Add components to your forms

3 Arrange components.

4 Modify component properties.

5 Create component interactions.

The next sections cover each step in more detail.

Adding forms to the project

When you created the project, your project template might have already
added forms to your project. Some components can only appear at the top
level in the Objects view of the Project window. These are the Visual Cafe
forms, including the Applet, Frame, Window, and some dialog
components. If you look in the Component Library, the forms provided
with Visual Cafe are all in one Forms group. A form can contain other
components, such as text, buttons, and graphics.

The form for an applet is the Applet component. The form for an
application with a GUI is the Frame component.

Other forms are the Window component and some dialog components.
When you create a Java program, you can display these forms from an
Applet or Frame, for example.
5-8

Designing a GUI with Visual Cafe
You can add a form to a project by using the Insert menu, or by using
drag-and-drop.

To add a form using the Insert menu:

1 While the project is selected, choose Form from the Insert menu.

2 Select a form template.

3 Click OK.

The new form is added to the project and the Form Designer opens.

To add a form using drag-and-drop:

Drag a form from any of the following areas into the Project window:
■ the Component Palette
■ the Component Library
■ the same Project window (press CONTROL and drag to copy the

form)
■ a different Project window

Note: If the parse fails, you can see a file in the Packages and Files
view, but not see an object in the Objects view of the Project
window. You probably need to correct the Java code to get the file
to parse. See “Adding code to a Java source file” on page 4-23, for
more information.

Adding components to a form

After you add a form to a project, you can add components to it in the
Form Designer.

To add a component to a form, select the component from the Component
Palette and drag it into the Form Designer. The Component Palette
contains a variety of components that you can add to forms including
standard Java window components. Visual Cafe also includes an extensive
list of custom and third-party components.

Components provide the user interface to your applet or application.

Note: Double-click on a form component to open the Property List for the
component or an appropriate editor.
5-9

Chapter 5: Including Visual Components
The following table describes the relationship between form types and
their valid components.

To add a component to a form:

1 Add the component by using one of these methods:
■ use the Insert menu
■ drag the component from the Palette to the Project window
■ drag the component from the Palette to the Form Designer
■ drag the component from the Component Library to the Form

Designer

2 Size the component.

3 While the component is selected, type in a name for the component.
The name should not contain spaces.

4 Change component properties as needed.

5 From the File menu, choose Save to save changes.

Note: Renaming a component must be done using the Name
property in the Property List.

Copying components

You can copy form components and menu bars to another form, within the
same form, or to another project by:
■ dragging and dropping the component to the target form
■ copying and pasting the component with menu commands and the

toolbar
■ selecting the component and using the Copy and Paste pop-up menu

commands

When you copy a component, the following points apply:
■ The object’s bound events are not moved to the new location.
■ You must manually move any code to the new form.

Form type Valid components

Frame Menus and all components

Applet All components, except menus and forms
5-10

Designing a GUI with Visual Cafe
■ Forms and components must have unique names. If necessary, an
object is renamed when pasted.

■ If you copy and paste a top-level container, the corresponding Java file
is duplicated and placed in the target project directory.

■ If you copy and paste a component in a container, the Java code of
that component is placed in the Java file of the top-level container.
Only component code that is automatically generated by Visual Cafe is
placed in the Java file. This does not include custom code and
interactions.

■ Visual Cafe only allows appropriate copies; for example, a component
that is not a container cannot be copied to the top level. While
dragging, a circle with a line through it means the operation is not
allowed.

You can copy components between the Project window (Objects tab),
Form Designer, and Menu Designer as needed.

To copy and paste a component:

1 Open the project(s) you want to use.

2 Click the Objects tab in the Project window, or open the Form
Designer or Menu Designer, then select the component that you want
to copy.

3 From the Edit menu, choose Copy, or right-click and choose Copy, or
click the toolbar Copy button.

4 If you want to paste the component within another container, select
that container.

5 While the target Project window (Object tab), Form Designer, or Menu
Designer is active, from the Edit menu, choose Paste; or right-click and
choose Paste, or click the toolbar Paste button.

The component appears in the Project window. If needed, the
component is renamed to prevent name conflicts.

To copy and drag a component:

Do either of the following:
■ Within the same project, press CONTROL and drag the component

to the location you want it.
■ To a different project, drag the component to the location you want

it.
5-11

Chapter 5: Including Visual Components
Moving components between forms

You can move a component from one form to another.

To move a component between forms:

Do either of the following:
■ In the Project window, drag the component on top of the new

form.
■ In the Form Designer, cut and paste the component.

When you move a component, the following points apply:
■ Moving a component to another form does not move the associated

code. You need to delete any code that references the component and
add it to the new form’s source code.

■ In the Form Designer, dragging a component from one form window
to another moves the component.

■ The object’s bound events are not moved to the new location. You
must manually move the code to the new class.

■ Forms cannot be moved into another form.

Deleting components from a form

You can delete a component from a form at any time.

To delete a component:

Do either of the following:
■ Select the component and press DELETE.
■ From the Project window, expand the object listing of the form that

you want to edit, select the component, and press DELETE.

Changing components

If you place components in your project, and you would like to change
them to another type of component, Visual Cafe lets you to do this easily.

For example, you may have placed one type of button on your form, but
now you want to change the kind of button. Instead of hacking the source
code, one way to do it is by deleting the components all together, and then
dragging new ones on to your form.
5-12

Designing a GUI with Visual Cafe
To change one component to another type of component:

In the Property List, select the component’s name from the Property
List's drop-down list.

To select multiple components, you must select them in the Form
Designer by CONTROL-clicking the desired components, SHIFT-
clicking, or dragging to select.

If the Form Designer is open, any changes that you make are dynamically
reflected.

Displaying invisible components

Some components are visible only at design time; that is, they are not
visible to the user at runtime. A menu bar is an example of a component
that is invisible at runtime.

Invisible components allow access to canned functionality such as File
Open dialog boxes. They are platform specific and share a set of basic
functionality. You can display the dialog box and use its existing
functionality.

To display or hide invisible components:

From the Layout menu, choose Invisibles.

Tip: To make form development easier, turn display of invisible
components off.
5-13

Chapter 5: Including Visual Components
Notes:

Invisible components never display at runtime.

When you add an invisible component to a form, all invisible components
display automatically.

Tabbing between fields on a form

You can allow users to tab between fields on a form by placing the fields
in a KeyPressManagerPanel container. The tab order of the components
contained by the panel is listed in the Project window. To change the tab
order, change the order of components in the Project window list.

Arranging components on your forms

Visual Cafe provides layouts (also called layout managers) to help you
organize components on a form or in a panel. You can group components
in panels on your form and use different layout managers to suit the
components contained by the panel.

To change the layout of a form:

1 Display the Form Designer by double-clicking the form in the Objects
view of the Project window. Or, you can right-click the form, and
choose Edit form.

Now you need to use the default layout tools or choose a layout
manager for the form.

2 Open the Property List for a form or panel.
5-14

Designing a GUI with Visual Cafe
3 Select a layout for the Layout property.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window. Or, you might have to position components first.

4 Rearrange the components in the Form Designer, if needed.

Notes:

You can also arrange objects with the Layout menu’s Align, Center,
Size, and Space menu commands and the Form Designer grid.
(These commands are only available when you do not specify a
layout manager for the form.)

You can move components by pixel spacing with the right, left,
up, and down arrow keys.

Using the layout manager of None

When you choose a layout of None, components are placed by exact pixel
positions on a form or panel. In the Form Designer, you can do the
following:
■ Drag components on the Form Designer to position them.
■ Explicitly set x and y coordinates in the Property List.
■ Arrange objects with the Align, Center, Space Evenly, Make Same Size,

Bring to Front, and Send to Back menu items of the Layout menu.
■ Use the Form Designer grid, which you can set by choosing Layout

Grid Options. See Manipulating the Form Designer grid for more
information.

■ Move a component pixel-by-pixel by selecting the component on the
Form Designer and pressing the right, left, up, and down arrow keys
as needed.

You should test your layout by running it on different operating systems
and screens, as applicable. For maximum portability, it is sometimes best to
not overlap components in your layout.
5-15

Chapter 5: Including Visual Components
Arranging components in BorderLayout

Use BorderLayout to arrange components in a center, north, south, east,
and west orientation. It positions components based on their preferred
sizes and the constraints of the container size.

To arrange components in BorderLayout:

1 Choose BorderLayout for the Layout property of a form or panel.

2 If components are already on the form or panel, rearrange
components, as needed. Set the Position property for each component
you want to position.

Note: In the BorderLayout, no components should have the same
Placement value.

3 In the Property List, choose the form or panel component, then set the
Horizontal Gap and Vertical Gap properties to adjust the layout.

4 For each component you want to add, add the new component, then
set its Placement property to place it on the form or panel.

When you first add a component, its position property is blank (which
is the same as CENTER).

5 Test your layout by running it at different form sizes and resolutions.
For example, you can resize the form when you run it from Visual
Cafe.

Arranging components in CardLayout

Use CardLayout to arrange components on several cards. Only one card is
visible at a time, which allows you to flip through the cards.

Note: At runtime, you have to programmatically implement flipping
through the cards.

A component will be sized to take up an entire card; if you want multiple
components on a card, place components on panels. That way, the panel
will take up the entire card.

To arrange components in CardLayout:

1 Choose CardLayout for the Layout property of a form or panel.
5-16

Designing a GUI with Visual Cafe
If components are already on the form or panel, each component
directly subordinate to the form or panel becomes a separate card. The
cards are placed in the order they appear in the Project window.

2 In the Property List, choose the form or panel component, then set the
Horizontal Gap and Vertical Gap properties to adjust the layout.

3 If components are already on the form or panel, rearrange components
in the Form Designer or Project window, as needed:
■ To change the card order, change the component order in the

Project window.
■ To flip between cards in the Form Designer, right-click, then

choose Previous Card or Next Card.

4 Add components as needed and rearrange them.

5 Test your layout by running it at different form sizes and resolutions.
For example, you can resize the form when you run it from Visual
Cafe.

Arranging components in FlowLayout

Use FlowLayout to arrange components in rows from left to right. You can
specify center, left, or right alignment, as well as the horizontal and center
gaps between components.

To arrange components in FlowLayout:

1 Choose FlowLayout for the Layout property of a form or panel.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

2 In the Property List, choose the form or panel component, then set the
Alignment, Horizontal Gap, and Vertical Gap properties to adjust the
layout.

3 If components are already on the form or panel, rearrange components
in the Form Designer or Project window, as needed.

4 Add components as needed and rearrange them.

5 Test your layout by running it at different form sizes and resolutions.
For example, you can resize the form when you run it from Visual
Cafe.
5-17

Chapter 5: Including Visual Components
Arranging components in GridLayout

Use GridLayout to arrange components in components in definable rows
and columns. This layout is similar to FlowLayout except each component
is in an area of equal size. You can specify the number of rows and
columns, as well as the horizontal and center gaps between components.

To arrange components in GridLayout:

1 Choose GridLayout for the Layout property of a form or panel.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

2 In the Property List, choose the form or panel component, then set the
Rows, Columns, Horizontal Gap, and Vertical Gap properties to adjust
the layout.

If you set either Rows or Columns to zero, GridLayout computes the
other value for you. If both Rows and Columns are nonzero, the Rows
value is used.

3 If components are already on the form or panel, rearrange components
in the Form Designer or Project window, as needed.

4 Add components as needed and rearrange them.

5 Test your layout by running it at different form sizes and resolutions.
For example, you can resize the form when you run it from Visual
Cafe.

Arranging components in GridBagLayout

Use GridBagLayout to arrange components by size and space. Like
GridLayout, GridBagLayout treats the form or panel as a grid of cells.
Unlike GridLayout, however, a component can occupy more than one cell.

To arrange components in GridBagLayout:

1 Choose GridBagLayout for the Layout property of a form or panel.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

2 Rearrange and add components as needed. In the Property List, choose
a component, then set the Grid Bag Constraints properties to adjust its
place in the layout. You can think of these properties as “suggestions”
that GridBagLayout uses.
5-18

Designing a GUI with Visual Cafe
3 Press F1 on a Grid Bag Constraints property to get a description of it.
Insets specify how much space to leave between the borders of a
component and its display area.

4 Test your layout by running it at different form sizes and resolutions.
For example, you can resize the form when you run it from Visual
Cafe.

Modifying component properties

Each component has a set of properties that define its look and behavior.
Visual Cafe provides a Property List from which you can directly modify
these properties. When you change a property, the source code and Form
Designer are immediately updated. If you change a property in the
Component Library, you see the changes the next time you use the object.

The Property List allows you quick access to all of the components within
the scope of the current form or applet. It shows the name of the selected
item and lists the component’s properties. As you add components to a
form, or set properties for the components on the form, the Form Designer
shows exactly what the form will look like when you run it.

To view or change the properties of components in a project, select one or
more components in the Form Designer or Project window.

If you select multiple components at the same time, only the subset of the
properties common to all selected components are displayed.
5-19

Chapter 5: Including Visual Components
To view or change the properties of components in the Component Library
and Palette, select one or more components in the Component Library.
Remember that if you change the properties of a component in the
Component Library, the change now appears every time you add that
component to a project. Any projects that already contain the component
before the change are not affected.

To modify a component’s properties:

1 From the Window menu, choose Property List to display the Property
List.

2 Select a component in the Form Designer, Project window, Component
Library, or from the Property List pull-down menu. To select multiple
components, CONTROL-click in the Form Designer, Project window,
or Component Library, or Shift-click or drag in the Form Designer.

When multiple components are selected, only their common
properties are shown and editable. In the Property List, you see the
heading title “Multiple Selection.”

3 To edit a property, click the right column, double-click the left column,
or use TAB in the Property List.

The right column displays a list of valid values or makes the text string
editable.

Properties with multiple values are marked with a plus sign (+); for
example, the Font property. Click the + to expand the list.

Properties that are defined using a dialog box are marked with the
ellipsis button (…). Click the … button to display the dialog box.

4 Press ENTER or click somewhere else to make the change.

The change is applied to all selected components.

Note: Press ESCAPE to cancel an edit and return the property to its
previous value.

Creating component interactions

One of the most powerful features of Visual Cafe is the ability to quickly
build a relationship, or interaction, between two components. Interactions
are implemented as methods and imply an event notification.

An interaction is created by connecting two components on a form. For
example, you may want to connect a dialog box (the action component) to
5-20

Creating menus with the Menu Designer
a button (the trigger component). You can connect components from
within the Form Designer or the Project window. (You can also create an
interaction relationship between a form and a component by using similar
steps.)

As you create interactions, Visual Cafe automatically generates code for the
relationship. This means that you can assemble interactive applets and
applications without writing code.

For more information about working with interactions, see “Working with
the Interaction wizard” on page 4-41.

Creating menus with the Menu Designer
You can add menu bars to frames and dialog boxes (they inherit from
MenuContainer); applets do not support menu bars. To create a menu bar,
you can do the following:
■ Add a MenuBar component to a frame or dialog box.
■ Add one or more Menu components to the MenuBar container.
■ Add one or more MenuItem components to a Menu container. You can

also add CheckboxMenuItem components.
■ Add one or more submenus to a menu item.
■ Add command key equivalents to menu items.
5-21

Chapter 5: Including Visual Components
■ Add interactions between menu items and other components in your
project. For example, specifying that a menu item open a dialog within
the same project.

■ Bind custom code to menu items.

The Frame component in the Basic Application template already has a
menu bar, which you can modify and enhance.

The Menu Designer makes it easier to create a menu bar by letting you edit
a visual representation of the menu bar. You can move items in the Menu
Designer to visually change the menu structure.

To open the Menu Designer:

1 Double-click a MenuBar component in the Project window or Form
Designer.

2 In the Project window, select the MenuBar component, then choose
Edit MenuBar from the Object menu, or right-click and choose Edit
MenuBar.

Using the Menu Designer pop-up menu

When you right mouse click in the Menu Designer, Visual Cafe displays a
pop-up menu with these commands:

Cut/Copy/Paste – These edit commands perform standard Windows
functions.

Insert Menu – This command inserts a menu in the menu bar; you can
then add menu items to the menu.

Insert Menu Item – This command inserts a menu item into the selected
menu that is in a menu bar.

Create Submenu – This command lets you create a submenu for the
selected menu item.

Edit Source – This command opens the source file for the menu bar so
you can bind code to menu items.

Add Interaction – This command opens the Interaction Wizard so you
can define an interactive behavior between the selected menu item and
another component in the same project.
5-22

Creating menus with the Menu Designer
Properties – This command displays the list of properties for the selected
menu component.

Adding a menu to a form

Menus are added to dialogs and frames in the Form Designer, and then
edited in the Menu Editor. Applets do not accept menu bars.

You can also add a menu by choosing Object from the Insert menu.

To add a menu to a form:

1 Click the MenuBar component in the Component Palette and drag it
into the open form.

2 Double-click on the menu bar object to open the Menu Editor.

Copying a menu

Copying menus allows you to reuse menus that are common among forms
and projects.

To copy a menu:

1 To open the Menu Editor, double-click the menu bar component on a
form or in the Project window.

2 In the Menu Editor, click on the menu that you want to copy.

3 From the Edit menu, choose Copy.

4 Open the target form and double-click the target menu bar
component.

The component appears in the Menu Editor.

5 Select a location for the new menu. You can paste a menu to the top-
level or within a menu to create a hierarchical menu.

6 From the Edit menu, choose Paste.
5-23

Chapter 5: Including Visual Components
Adding a menu bar to a frame or dialog box

You can add the MenuBar component to a frame or dialog box in a variety
of ways.

To add a menu bar to a frame or dialog box:

Do one of the following:
■ Drag a MenuBar component from the Component Library or Palette

into the Project window or Form Designer.
■ While the Project window or Form Designer is active, choose

Component from the Insert menu.
■ Right-click the frame or dialog box in the Project window and

choose Insert Component.
■ Copy and paste it within the same project or between projects.

To open the Menu Designer:

1 Double-click a MenuBar component in the Project window or Form
Designer.

2 In the Project window, select the MenuBar component, then choose
Edit Menu from the Object menu, or right-click and choose Edit Menu.

Adding menus to a menu bar

You can add a Menu component to a MenuBar component.

To add a menu to a menu bar:

1 Do one of the following:
■ Drag a Menu component from the Component Library or Palette

into its position in the Project window or Menu Designer.
■ While the menu bar is selected in the Menu Designer, right-click

and choose Insert Menu.
■ Right-click the menu bar in the Project window and choose Insert

Component.
■ While the menu bar is selected in the Project window or Menu

Designer, choose Component from the Insert menu.
■ Copy and paste it within the same project or between projects.

2 In the Property List, set the menu properties, including the menu
name, in the Label property.
5-24

Creating menus with the Menu Designer
The Help Menu property lets you integrate the menu item into an
existing Help menu that is part of the operating system, for example.

Adding menu items to menus

You can add a MenuItem or CheckboxMenuItem component to a Menu
component.

To add a menu item to a menu:

1 Do one of the following:
■ Drag a component from the Component Library or Palette into its

position in the Project window or Menu Designer.
■ While a menu item is selected in the Menu Designer, right-click and

choose Insert Menu Item.
■ Right-click the menu in the Project window and choose Insert

Component.
■ While a menu is selected in the Project window or Menu Designer,

choose Component from the Insert menu.
■ Copy and paste it within the same project or between projects.

2 In the Property List, set the menu item properties, including the menu
item name in the Label property.

Tip: To add more menu items while in the Menu Designer, you
can now select the bottom menu item in the list and press ENTER.

Adding submenus to menu items

You can add a MenuItem or CheckboxMenuItem component to a
MenuItem component.

To add a submenu to a menu item:

1 In the Menu Designer, right-click a menu item and choose Create
Submenu.

A submenu appears.

2 While the submenu is selected, in the Property List set the submenu
properties, including the name of the menu in the Label field
5-25

Chapter 5: Including Visual Components
Tip: To add more submenu items, you can now select the bottom
submenu item in the list and press ENTER.

To add a CheckboxMenuItem component as a submenu:

1 Drag it from the Component Library or Palette to its position in the
Project window or Menu Designer.

2 In the Project window or Menu Designer, select the parent menu item
or a submenu, then choose Component from the Insert menu.

Editing a menu structure

You can change the menu structure as needed.

To move items in the menu structure:

Move items in the Menu Designer or Project window to visually
change it.

To delete a menu or menu item:

Select the component in the Menu Designer or Project window, then
press DELETE or choose Edit Delete.

Note: If you delete a component from a container, you must
manually delete any custom code or interactions involving that
component.

Editing menu bars and menus

Menus are edited using the Menu Editor and Property List. Each menu is a
subcomponent of the menu bar.

To edit a menu or menu bar:

1 Add a menu bar to the form, or if the menu bar already exists, do
either of the following:
■ In the Form Designer, double-click on the menu object.
■ In the Project window, double-click on the menu bar icon.

Note the menu placeholder in the menu bar window.

2 Open the Property List by choosing Property List from the Window
menu.
5-26

Creating menus with the Menu Designer
3 Do either of the following:
■ Select the Label property and enter the menu caption.
■ Highlight the menu placeholder and start typing. The text is added

to the Label property.

4 To add more menu items:
■ press ENTER to move down to the next menu item.
■ choose Insert Menu Item from the pop-up menu to insert a

command before the selected command.

5 Right-click on the menu item to display the pop-up menu.

6 Choose Create Submenu.

7 Bind code to the appropriate menu items.

8 Define any interactions by selecting the menu item and choosing Add
Interaction from the pop-up menu.

Associating command keys and menu items

You can quickly add command keys to menu items.

To associate a command key with a menu item:

1 Select a menu item in the Project window or Menu Designer.

2 In the Property List, expand the Menu Shortcut property and specify
the command key(s) in the Key Code and Use Shift Key fields.

The Key Code field lets you specify what keys you want to use, for
example, VK_P selects CTRL+P. In the Menu Designer and Project
window, this key sequence displays as “CTRL+Kanji.”

If you want the SHIFT key to be part of the command key sequence,
choose true; otherwise, choose false.

3 Verify your command keys by running your Java program:
■ From the Project menu, choose Execute to run the project with no

debug processing.
■ From the Project menu, choose Run in Debugger to run the project

and have access to all debugging functionality.

Note: You can compile and run a project any time during its
development cycle. Visual Cafe automatically saves files in the
project before running.
5-27

Chapter 5: Including Visual Components
Binding code to a menu item

Code can be bound to a menu item just as it can be bound to a
component. Menu items respond to one event: ActionEvent. This event
occurs when the user selects the menu command.

To bind code to a menu item:

1 Open the menu bar in the Menu Designer or Project window.

2 Select the menu item.

3 Choose Edit Source from the pop-up menu.

4 In the Source window, select the Action event from the Event/Method
drop-down list.

5 Add the appropriate Java code to the event handler.

Working with the Component Palette
The Component Palette contains a variety of components that you can add
to forms. The Palette can contain visual objects, program modules, and
form templates.

You can control the Palette’s position and visibility by docking, floating,
resizing, and hiding.

The Interaction Tool allows you to create an interaction between two
components by visually connecting their behavior.

 The Selection Tool is enabled by default. Click on this icon to return to
object select mode. A component is selected only if it is completely
surrounded by the selection rectangle.

You can also customize the Palette to contain the objects that you use most
often.

The following sections describe common components in the Component
Palette that you can add to your forms.
5-28

Working with the Component Palette
Using the InvisibleHTMLLink component

An InvisibleHTMLLink component lets you set up a jump to a URL.
Because it is invisible, InvisibleHTMLLink is ideal for creating a clickable
area over an image that lets you jump to a new location in an HTML file.

To use the InvisibleHTMLLink component:

1 In the Component Palette, click Additional, then click
InvisibleHTMLLink and click and drag to draw a rectangle on the Form
Designer.

Alternatively, you can drag InvisibleHTMLLink from the Component
Library and resize and reposition it.

A new InvisibleHTMLLink appears in the Form Designer.

2 In the Property List, double-click the HTML Link URL property.

3 In the HTML Link URL dialog box, type the URL.

Notes:

Anchors (#) are supported if you want to jump to a specific
location within an HTML file.

Different browsers use a different z-order when determining how
components overlap in an applet. The InvisibleHTMLLink must be
on top for users to be able to click it. To ensure compatibility with
different browsers, it is a good idea to “sandwich”
InvisibleHTMLLinks on top and beneath components they overlap.
Use Layout Sent to Back or Send to Front.

Different browsers handle anchors (#) differently. For example,
while Netscape Navigator requires one # symbol, Internet Explorer
requires two (##). If you are using relative URLs, the Visual Cafe
component will handle both cases for you; it is sufficient to type
one #. However, if you are using absolute URLs, the Visual Cafe
component cannot handle the difference for you.

Using the MultiList component

A MultiList component lets you create a table with rows and columns.
5-29

Chapter 5: Including Visual Components
To use the MultiList component:

1 In the Component Palette, click Additional, then click MultiList and
drag it to the Form Designer.

Alternatively, you can drag MultiList from the Component Library.

A new MultiList appears in the Form Designer.

2 Resize the new MultiList component as needed.

3 In the Property List, click the Column Headings property, then type
your column names. Press CTRL+ENTER between labels, then ENTER
after the last label.

4 Click the List Items property, then type the list items according to these
guidelines:
■ Press CTRL+ENTER between rows, then ENTER after the last row.

(Each row should be on its own line.)
■ Type a semicolon (;) to indicate a new column in a row, for

example, john; cheryl; tim would specify text for three columns in
one row.

■ Add rows in order from top to bottom.

5 Optionally set the Heading and Cell properties to customize the look
of your table.

Using the ScrollingPanel container

A ScrollingPanel container has scroll bars and can contain one panel,
which can contain multiple components.

To set up a ScrollingPanel container:

1 In the Component Palette, click Panels, then click ScrollingPanel and
drag it to the Form Designer.

Alternatively, you can drag ScrollingPanel from the Component
Library.

A new ScrollingPanel appears in the Form Designer.

2 Resize the new ScrollingPanel component to be the size you want it to
be.

3 Design another panel.

4 Drag the other panel onto the ScrollingPanel.

The panel now appears within the scrolling region. You can test it in the
Applet Viewer.
5-30

Working with the Component Palette
Using the TabPanel container

A TabPanel component can contain multiple panel components. You can
access a particular panel by clicking its tab, which can appear on the top or
bottom of the TabPanel.

To set up a TabPanel container:

1 In the Component Palette, click Panels, then click TabPanel and drag it
to the Form Designer.

Alternatively, you can drag TabPanel from the Component Library.

A new TabPanel appears in the Form Designer.

2 Resize the new TabPanel component as needed.

3 If the background color is white, you could set the Background
property of TabPanel to a color, such as lightGray, to see the tabs
better.

4 Drag panel components onto the TabPanel.

A tab is automatically added for each panel, from left to right. You can
change the tab order by changing the order of the panels listed in the
Project window.

Be sure to drag panels onto the TabPanel, and not a panel it contains.
For example, you can drop a panel next to one of the tabs.

Tip: To make a tab the default active tab, enter its number in the
TabPanel Active Tab property. The tabs are numbered starting
from 0 at the left.

5 In the Property List, choose the TabPanel component from the menu,
then click the Tab Labels property.
5-31

Chapter 5: Including Visual Components
6 Type the tab labels. Press CTRL+ENTER between labels, then ENTER
when you are finished entering labels.

The labels are added in order. The top label is the rightmost label, and
the bottom label is the leftmost label.

7 If you want the tabs to appear on the bottom rather than the top, set
the Tabs On Bottom property to true.

8 To add components to a panel contained by a TabPanel, click a tab in
the TabPanel, then drag components onto this panel.

After clicking a tab, you can click the panel associated with that tab to
better see its dimensions. All panels contained by TabPanel are the
same size. You must resize the TabPanel to change the size of all the
panels it contains.

Using the TreeView component

Use the TreeView container to create a hierarchical list of different text
elements. The list can be expanded and contracted by users, similar to a
directory structure of files.

To use the TreeView component:

1 In the Component Palette, click Utility, then click TreeView and drag it
to the Form Designer.

Alternatively, you can drag TreeView from the Component Library.

A new TreeView appears in the Form Designer.

2 Resize the new TreeView component as needed.

3 In the Property List, click the Items property, then type your labels
according to these guidelines:
■ Press CTRL+ENTER between labels, then ENTER when you are

finished entering labels. (Each label should be on its own line.)
■ Add labels in order from top to bottom.
■ Create a hierarchy by adding spaces to the front of a label (spaces

within a label are allowed). For example, no space is the root level,
one space is the next level into the hierarchy, two spaces indicates
one more level in, and so on. The label will be subordinate to the
first label above it that is at a higher level in the hierarchy.

4 Look through the hierarchy in the Form Designer, then make
adjustments to the Items property as needed.
5-32

Working with the Component Palette
Building a custom Palette

Visual Cafe provides a extensive collection of custom and third-party
objects that you can quickly add to your forms, including grids and tabbed
dialog boxes.

Palette customization includes:
■ creating object groups
■ adding objects to the Palette
■ deleting objects from the Palette
■ removing a tab from the Palette

You can add and remove objects on the Palette from the Environment
Options dialog box Component Palette tab.

When groups are added to the Palette, they display on the Palette as tabs.
Palette tabs can display horizontally only.

The left list box shows all the objects in the Component Library. The right-
hand list represents the Palette itself.

Creating a Palette tab

You can add tabs to your custom Palette to help organize components.

To create a Palette tab:

1 Click the Component Library window.

2 From the Insert menu, choose Group.

A new folder appears in the Component Library window.

3 Edit the group item name and press Return to enter the new group
name.

4 Add your components to the new group folder.

5 Drag the group to the Component Palette. A new Tab for your group
appears.

Adding components to the Palette

The Palette contains reusable objects. You can add any object from the
Component Library to the Palette and easily use the object in your applets
and applications.
5-33

Chapter 5: Including Visual Components
You can add objects to the Palette with these tools:
■ Component Library
■ Project window
■ Component Palette tab in the Environment Options dialog box

Adding Palette objects from the Component Library

You can drag an object from the Component Library to the Palette to use in
your applets and applications.

To add objects to the Palette from the Component Library:

Drag the object from the Component Library and drop it on the tab of
the Palette where you want the icon stored. Duplicates are not allowed
in the same tab.

Note: Dragging and dropping a group from the Component
Library creates a tab on the Palette. The tab contains all
components in the group.

Adding Palette objects from the Project window

While working in the Project window, you can quickly add objects to your
custom Palette.

To add Palette objects from the Project window:

1 Select the object.

2 Drag and drop the object onto the tab of the Palette where you want
the object to be stored.

Adding Palette objects from the Component Palette tab

The Component Palette tab provides an interface to help you quickly
customize your Palette.

To customize your Palette from the Component Palette tab:

1 From the Tools menu, choose Environment Options, then click the
Component Palette tab,

or
5-34

Working with the Component Palette
Right-click and choose Customize Palette from the Component
Palette’s pop-up menu.

2 Do either of the following:
■ Select an object or group from the Component Library pane and

drag it onto a Palette Group or into the general Palette area.

Dragging an object adds it to the current Palette group. Dropping
the object onto another object adds the selected object as a sibling
of the same group.

■ Select a Group in the Palette pane. Select an object in the
Component Library pane. Then click the Add button.

The selected object is added as a member of the current group.

Moving Palette components

Palette components can be moved within their group or to another group.

To move Palette components:

1 Hold down the Control key.

2 Click the component you want to move.

Within the Palette toolbar, you can drag and drop components within the
same tab to reorganize their display.

Deleting components from the Palette

As you customize your Palette, you may need to remove objects that you
no longer need on a frequent basis.

Caution: Deleting a tab deletes the group and all objects within the tab.

Deleting a component from the Palette:

1 Click an object on the Palette.

2 Right-click and select Remove Component.

Deleting a component from the Environment Options dialog box:

1 From the Tools menu, choose Environment Options > Palette tab.

2 Select the object to delete from the Palette Pane.

3 Click Remove or press the DELETE key.
5-35

Chapter 5: Including Visual Components
Working with the Component Library
If you have modified a Visual Cafe component and want to place it in the
Component Library, all you have to do is drag the component from the
Project window, Objects view, into the Component Library. However, if
you want to add custom components that are not based on the Visual Cafe
components, you need to follow these steps.

Note: You only need to add components to the Component Library if you
want to visually select and use the custom component with Visual Cafe
views. Custom components can be referenced in the program’s Java code
without being integrated into Visual Cafe.

To add a custom component to the Component Library:

1 Create the component class Java file (.class).

2 Create a description file for the component (.desc).

3 Create a small icon for the component (.ico).

Create a 32 by 32 standard Windows icon, but only the 16 by 16 upper
left region of the icon will be used and displayed by Visual Cafe.

4 Add the icon and description files to your Visual Cafe environment.

The description file and component icon must be copied to the Visual
Cafe bin\component directory.

5 Make sure the class file is in the location you want to store it.

This location must be in your class path. Remember that class files are
case-sensitive. If you want to add the class file to a package, the class
file must be in the package directory.

6 Optionally add the compiled component class to a package in your
project.

7 Display the Component Library by choosing Window Component
Library.

8 From the Insert menu, choose Component into Library.

An Open dialog box appears.

9 Select the class file, then click Open.

An Add to Library dialog box appears.

10 Select a group, then click OK.

The component is added to the Component Library.
5-36

Viewing a component s Java source
As you are developing your project, you can delete user-created objects for
the Component Library. Deleting a component from the Library also
removes the component from the Palette.

To delete an object from the Component Library:

1 In the Component Library, select the object to be deleted.

2 From the Edit menu, choose Cut (or press the DELETE key).

Viewing a component’s Java source
You can open a component’s Java source file to enhance the component
behavior with custom Java code.

To view a component’s Java source:

1 Do either of the following:
■ In the Form Designer, double-click on the component.
■ Select the component in the Source window or Form Designer,

then choose Object, then Open Source from the pop-up menu.
5-37

Chapter 5: Including Visual Components
2 In the Source window, add your custom code to the file.
5-38

C H A P T E R 6
Compiling, running, and
deploying your program

Introduction
Visual Cafe applets and applications are cross-platform Java programs that
you design, develop, and build using the drag-and-drop features of Visual
Cafe. Both are executed by a Java Virtual Machine, but applets run only
within a Web page, while applications run on their own. You can use
Visual Cafe to compile a Java program to bytecode, exercise it to verify its
behavior, debug it as necessary, and eventually deploy it to users.

Concepts of applets and applications
The program coding used to create applets and applications are
fundamentally similar. Both applets and applications are created using the
same basic programming concepts. Because the Web browser is
responsible for running an applet, program instructions for applets have a
different organization than the instructions for applications.

Applets

Java applets, like all Java programs, are made up of source code that is
compiled into a class file. A reference to the class file is placed in a Web
page. The Web page is downloaded across the Internet using a Java-
capable Web browser. As the bytecode contained in the class file is read,
the Web browser’s Java interpreter converts the bytecode into machine
specific instructions, executes the program, and displays it.
6-1

Chapter 6: Compiling, running, and deploying your program
Another feature of applets is that when they are executed within a Java-
capable browser, the applet adopts the look and feel of the client
machine’s operating system and native interface controls. This means that a
Java applet will look and feel like it was written for the Macintosh when it
runs in the Macintosh environment, Windows applets will have the
Windows look to them, and UNIX applets will reflect the look of the
various flavors of UNIX.

Applets, however, cannot read from or write to a user’s local hard drive. To
add this capability to your applet, Symantec has created the database
solution dbAnywhere.

When you create an applet with Visual Cafe, you create a subclass of the
class Applet in the java.applet package. This Applet class enables your
applet to work within a Web browser and to utilize the capabilities of the
Abstract Window Toolkit. The AWT allows your applet to include user
interface (UI) elements, to handle mouse and keyboard events and to
display to the screen. Although your applet can utilize as many classes as it
needs, the main Applet class triggers the execution of the applet. Its
signature is as follows:

public class myClass extends java.applet.Applet {

. . .

}

Java requires that your Applet subclass be declared as public . This is only
true of the main Applet class; all other classes may be declared public or
private as you desire.

Advantages and disadvantages

Java applets have a significant advantage over applications because the
Web browser software handles many of the functions that are required to
make the applet run.

Standalone applications have overhead that must be written to make the
program run properly; a stand-alone program must be able to start and
stop the program, perform memory management, and handle display
functions. Although this requires additional programming work,
applications do not depend on the presence of a Web browser, nor do they
have limitations on the kind of operations they can perform.

Because the browser software provides this functionality for applets
automatically, applets are an attractive type of Java program to work with.
6-2

Concepts of applets and applications
Applet limitations

Sun designed Java to restrict the kinds of operations applets can perform.
Limitations are imposed on applets so that a destructive program from a
remote computer cannot steal information or cause damage to your
system. To prevent applets from being destructive, Java enforces the
following limitations:
■ Applets cannot read from or write to the file system of the computer

viewing the applet. This prevents damage to files and the spread of
viruses.

■ Applets cannot run any programs (or parts of programs like DLLs or
shared files) on the viewer’s computer. This prevents an applet from
calling destructive programs that do not have the limitations of the
applet.

■ Applets can only establish connections between the server computer
where the applet is stored and the client’s computer. This restriction
prevents the applet from connecting the client’s computer to another
server without the viewer’s knowledge.

Java applications do not have these limitations and can be used to build
fully functional software programs.

Applications

An application is a Java program that runs with a Java Virtual Machine
(Java VM) or a Java compatible browser that is installed on the client
system. An application is not displayed on a Web page. Java applications
can be built because the Java language includes useful features that are not
found standard in other languages. For example, Java comes with existing
libraries of program code that make networking and graphics operations
easier than ever.

Java applications, unlike applets, can read from and write to the client
machine’s hard drive. Applications can create their own frames, title bars,
and menus.

Because applications are Java programs that run on their own, applications
can be as large or as small as you want or need them to be. The only class
that is needed to run an application is the main method. When you run
your compiled Java class with the Java interpreter in Visual Cafe, the main
method is called first.

The signature for the main method always looks like this:
6-3

Chapter 6: Compiling, running, and deploying your program
public static void main(String args[]) {. . .}

The parts of this line of code have the following meanings:
■ The public keyword means that the method can be “seen” or used by

other classes and components. The main method of your application
must be declared public for the application to run.

■ The keyword static specifies a storage class.
■ The keyword void tells the main method to not return anything.
■ The main method takes one argument, which is an array of strings.

This array is used for command-line arguments outside of Visual Cafe.

For example, the body of the main method contains all the code your
application needs to start executing. This includes code for variable
initialization or component instantiation

Compiling and running
You can compile and run a project any time during its development cycle.
Visual Cafe automatically saves files in the project before running.

■ From the Project menu, choose Execute to run the project with no
debug processing.

■ From the Project menu, choose Run in Debugger to run the project
and have access to all debugging functionality.

See “Setting project-level options” on page 3-34 for information about
defining general project and run-time options.
6-4

Compiling and running
Setting compiler options

From the Compiler tab of the Project Options dialog box, you can control
what compiler information is sent to the Messages window, which Java
compiler to use, JavaDoc options, Input Encodings, and whether Java
optimizations are performed. Click the Project tab to access the option set
for the Debug or Final release type.

To set compiler options:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Compiler tab.
6-5

Chapter 6: Compiling, running, and deploying your program
4 Select the options you want:

Select… To specify this…

Use Java Optimizations Optimize the Java executable for a more
compact executable that runs faster. (Default:
enabled for Final and disabled for Debug
release types)

Select the Disable function inlining option if
needed. Inlining means that Visual Cafe
takes a function’s code and imbeds it in the
calling function instead of calling the
function. Inlining increases execution speed
but also increases executable size. (Default:
not selected)

Generate Debug Information Create debugging information used by the
Visual Cafe debugger. For example, this
option lets you see local variables during
debugging. (Default: enabled for Debug and
disabled for Final release types)

Show compiler warnings In the Messages window, display detailed
messages that you might be interested in if
you need more information; for example, if
you have import problems these messages
trace where your classes are coming from to
help you resolve any import and class path
problems. (Default: enabled)

Show progress messages Show compiler progress messages in the
Messages window. (Default: disabled)

Show dependencies Display file dependencies, such as imports,
in the Messages window. (Default: disabled)

Show all Java messages In the Messages window, display detailed
messages that you might be interested in if
you need more information; for example, if
you have import problems these messages
trace where your classes are coming from to
help you resolve any import and class path
problems. (Default: disabled)
6-6

Deploying Java programs
5 Click OK.

The change takes effect next time you compile your project.

Correcting your source code

If there are syntax errors in your source code, Visual Cafe flags them in the
Messages window after a compile. You can easily navigate to each error
directly from the Messages window.

1 From the Window menu, choose Messages to bring the Messages
window to the front.

2 Double-click on any error message to go to that error.

The file containing the error opens at the offending line within a Source
window. Once the file opens, you can work on your source code.

Deploying Java programs
Java is a programming language that allows you to design, build, and
execute applications and applets. Java programs must be coded, compiled,

Use the Sun Java compiler Use the Sun Java compiler, javac.exe .
When this option is cleared, the Symantec
Java compiler, which is faster, is used.
(Default: disabled)

Select… To specify this…
6-7

Chapter 6: Compiling, running, and deploying your program
and debugged similarly to development in any other computer
programming language before they can be used.

Deploying your applet

After you complete an applet in Visual Cafe, you are ready to deploy it on
a Web site. You need to know how your particular Web site is set up to get
your applet up and running. However, here are some guidelines. Because
your project can contain more than one applet that appears in related Web
pages, these guidelines are for setting up a project that contains one or
more applets.

Important: The classes needed by Visual Cafe components are stored in
symbeans.jar . You do not want to deploy using symbeans.jar , because it
will affect the performance of your applets. Instead, you want to deploy
using just the classes needed by the components in your applets. These
classes can be packaged in a JAR file or not.

To deploy your applets in a JAR:

1 Use the Project JAR command to create a JAR file containing your
applets and all supporting files, including Symantec class files. See
Chapter 7, “Working with JavaBeans” for more information.”

Tip: Your applets should use relative URLs for graphics files so
you can easily move your applets to different computers.

2 Add the variable ARCHIVE="name.jar" to the applet tags in your HTML
files. You can specify multiple JAR files by delimiting them with a
comma (,).

Tip: Remember that the applet tags specify where your applets are
relative to the location of the HTML files. So you must place the
JAR file in the same relative location.

3 On your local computer, test your Web pages by opening them in a
Web browser from outside of the Visual Cafe environment.

4 Put your JAR file and HTML files in a directory on the Web server, as
they appeared in your Visual Cafe project directory.

5 After completing the setup of your Web site, test your Web pages from
remote computers. You can also test it with different operating systems
and Web browsers.
6-8

Deploying Java programs
To deploy your applets outside of a JAR:

Here is one way:

1 Use the JAR command under the Project menu to create a JAR file
containing your applets and all supporting files, including Symantec
class files. See Chapter 7, “Working with JavaBeans” for more
information.

Tip: Your applets should use relative URLs for graphics files so
you can easily move your applets to different computers.

2 Create a new directory for your deployment files.

3 Expand the JAR file into the new directory. See Chapter 7, “Working
with JavaBeans” for more information.

Note: If you want to put the class files your applets use into a JAR
file, create the JAR file then add the variable ARCHIVE="name.jar"
to the applet tags in your HTML files. You can specify multiple JAR
files by delimiting them with a comma (,).

4 Copy the HTML files for your Web pages into the new directory.

Tip: Remember that the applet tags specify where your applets are
relative to the location of the HTML files.

5 On your local computer, test your Web pages by opening them in a
Web browser from outside of the Visual Cafe environment.

6 Put your files in a directory on the Web server, as they appeared in the
directory on your local computer.

7 After completing the setup of your Web site, test your Web pages from
remote computers. You can also test it with different operating systems
and Web browsers.

Here is another way:

1 Create a deployment directory on your local computer.

2 Put all of your applet class files, HTML files, and other supporting files
(such as graphics files) in the deployment directory, as they appeared
in your Visual Cafe project directory.

Tip: Your applets should use relative URLs for graphics files so
you can easily move your applets to different computers.
6-9

Chapter 6: Compiling, running, and deploying your program
3 Enable your applet to access the class files it needs, including the
Symantec class files. (Remember that the Web browser should provide
access to standard Java class files.) See “Determining what class files an
applet or application needs” on page 6-16 for more information.

If you want to put the class files your applets use into a JAR file, create
the JAR file then add the variable ARCHIVE="name.jar" to the applet
tags in your HTML files. You can specify multiple JAR files by
delimiting them with a comma (,).

If the class files are not in a JAR file, you can place the files in the
deployment directory, preserving the directory structure and case of
the class names

4 On your local computer, test your Web pages by opening them in a
Web browser from outside of the Visual Cafe environment.

5 Put your files in a directory on the Web server, as they appeared in the
directory on your local computer.

6 After completing the setup of your Web site, test your Web pages from
remote computers. You can also test it with different operating systems
and Web browsers.

Including your applet in a Web page

HTML stands for HyperText Markup Language. A markup language is made
up of a system of tags that preserves a document’s structure so that it can
be disassembled, moved electronically, and reassembled when it reaches
its final destination. The “Markup” part of HTML refers to tags that affect
the way information in a document will be displayed. By using different
HTML tags, you control text editing, formatting, how graphics and
animations are displayed.

Java is an interpreted, Object Oriented programming language with a
syntax and structure similar to C++, designed by Sun specifically for the
Internet. One of the fundamental features about the Java programming
language is that it is platform independent. Java applets and applications
will run on any computer platform that has Java installed on it.

An HTML document can contain links to Java programs so that you can
display a Java program alongside regular text in a Web page Because
HTML now supports Java, users get the best of both worlds. Visual Cafe
can provide the necessary HTML you need to run and view your applet
within Visual Cafe. However, Visual Cafe is not intended as a tool for
writing HTML documents. You can achieve this task with Symantec’s Visual
Page HTML editing application.
6-10

Deploying Java programs
HTML, Java, and the World Wide Web

Applets are designed to be embedded in Web pages. Basic operations such
as starting, stopping, and displaying the applet are all handled by the Web
browser. In order to tell the Web browser to display the applet, you have
to put certain information about the applet in the HTML file.

For the Web browser to be able to display an applet, it requires some basic
information. provided through the use of the <APPLET> tag. Within the
scope of the <APPLET> tag you specify where to find the class file, and how
large to make the display space within the Web page. Like many HTML
tags, <APPLET> marks the beginning of it scope and </APPLET> marks the
end. The <APPLET> tag is a link to a class file that contains bytecode. The
Web browser interprets the bytecode and displays the applet in the Web
page.

In addition, there are three attributes for the Applet tag: CODE, WIDTH, and
HEIGHT.

Viewing and editing HTML files

If HTML files are included in your project, you can view the file and edit its
HTML code from within Visual Cafe.

To edit an HTML file:

1 Open the file by using one of these methods:
■ In the Project window, double-click on the HTML file name.
■ From the File menu, choose Open, and select the file.

2 In the Source window, make any necessary edits.

3 Save the file (from the File menu, choose Save).

Adding an applet to an HTML page

After assembling your applet and testing it in Visual Cafe, you are ready to
add the applet to your HTML page.

Using the <APPLET> tag, you specify (at a minimum) the location of the
Applet subclass and the dimensions of the applet’s on-screen display area.
When a Java-capable browser encounters an <APPLET> tag, it reserves on-
screen space for the applet, loads the Applet subclass onto the computer
the browser is executing on, and creates an instance of the Applet
6-11

Chapter 6: Compiling, running, and deploying your program
subclass. Next, the browser initializes the applet, the applet is off and
running.

The bold lines of the following listing comprise the <APPLET> tag that
includes the “Hello World” applet in an HTML page.

<HTML>

<HEAD>

<TITLE> A Simple Program </TITLE>

</HEAD>

<BODY>

Here is the output of my program:

<APPLET CODE="HelloWorld.class" WIDTH=150 HEIGHT=25>

</APPLET>

</BODY>

</HTML>

The <APPLET CODE="HelloWorld.class" WIDTH=150 HEIGHT=25> tag

specifies that the browser load the class whose compiled code is in the file
named HelloWorld.class . The browser looks for this file in the same
folder (directory) as the HTML document that contains the tag.

When the browser finds the class file, it loads, creates, and displays an
instance of the class. If you include an <APPLET> tag twice in one HTML
page, the browser loads the class file once and creates and displays two
instances of the class.

The WIDTH and HEIGHT attributes are like the same attributes in an
tag: They specify the size in pixels of the applet’s display area. Most
browsers do not let the applet resize itself to be larger or smaller than this
display area.

To ensure that the required Symantec custom classes are available to your
applets at all times, move the \symantec folder structure to your HTML
folder. The symantec folder is found in \java\lib of the Visual Cafe
installation folder.

Passing parameters to applets from the HTML file

It is often helpful to have an applet receive information from an HTML
document. This allows people to customize how applets appear in their
Web pages. To pass information from an HTML document to a Java applet,
use the <PARAM> tag.
6-12

Deploying Java programs
The <PARAM> can appear between the HTML <APPLET> and </APPLET> tags.
The <PARAM> tag has two attributes, NAME and VALUE, which are used to
pass data to a Java applet.

<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=100>

<PARAM NAME="Color" VALUE="red">

<PARAM NAME="Number" VALUE="81">

</APPLET>

The HTML file can pass multiple parameters. After the parameters are set in
the HTML file, an applet can retrieve them through the getParameter
method

String x=getParameter("Color");

In the example above, we declare a variable x of type String to hold the
Color parameter retrieved from the HTML document. It is necessary to
specify the name of the parameter to retrieve from the HTML file.

The parameter is named Color :

<PARAM NAME="Color" VALUE="red">

The name of the parameter is specified as the argument passed to
getParameter in the applet code.

getParameter("Color");

This results in the getParameter method returning the value “red” from the
HTML file.

Deploying your application

After you complete an application in Visual Cafe, you are ready to deploy
it. Requirements for different applications vary. However, here are some
guidelines:

To deploy your application in a JAR:

1 Use the JAR command under the Project menu to create a JAR file
containing your application and all supporting files, including
Symantec class files. See “Using JAR files” on page 7-10, for more
information.

Tip: Your application should use relative URLs for graphics files so
you can easily move your application to different computers.
6-13

Chapter 6: Compiling, running, and deploying your program
2 On your local computer, test your application by running it from
outside of the Visual Cafe environment. To start your application, the
JAR file must be in the class path. For example, you could type at a
DOS prompt:

set classpath=%classpath%;name.jar

Then you can run your application:

java application-name

java invokes java.exe and, if needed, includes the complete path, for
example, \visualcafe\java\bin\java . Your application name is the
same as the name of the frame for the main application window
without the class extension; it is case-sensitive and you might need to
include the complete path.

For example:

set classpath=%classpath%;Amazing.jar

\visualcafe\java\bin\java AmazingTour

3 Test your application from remote computers. You can also test it with
different operating systems.

Note: Your users need to obtain or you need to provide the Java
virtual machine and standard Java class files. The Symantec Java
virtual machine must be licensed from Symantec.

To deploy your application outside of a JAR:

Here is one way:

1 Use the JAR command under the Project menu to create a JAR file
containing your application and all supporting files, including
Symantec class files. See “Using JAR files” on page 7-10.

Tip: Your application should use relative URLs for graphics files so
you can easily move your application to different computers.

2 Create a new directory for your deployment files.

3 Expand the JAR file into the deployment directory. See “Using JAR
files” on page 7-10, for more information.

Note: You can put the class files your application uses into a JAR
file, but remember that the JAR file must be added to the class path
on the computer the application runs on.
6-14

Deploying Java programs
4 On your local computer, test your application by running it from
outside of the Visual Cafe environment.

To run your application, type at the DOS command line:

java application-name

java invokes java.exe and, if needed, includes the complete path, for
example, \visualcafe\java\bin\java . Your application name is the same
as the name of the frame for the main application window without the
class extension; it is case-sensitive and you might need to include the
complete path.

For example:

\visualcafe\java\bin\java AmazingTour

5 Test your application from remote computers. You can also test it with
different operating systems.

Note: Your users need to obtain or you need to provide the Java
virtual machine and standard Java class files. The Symantec Java
virtual machine must be licensed from Symantec.

Here is another way:

1 Create a deployment directory on your local computer.

2 Put all of your application class files and other supporting files (such as
graphics files) in the deployment directory, as they appeared in your
Visual Cafe project directory.

Tip: Your application should use relative URLs for graphics files so
you can easily move your application to different computers.

3 Enable your application to access the class files it needs, including the
Symantec class files. (Remember that the Java virtual machine should
come with the standard Java class files.) See “Determining what class
files an applet or application needs” on page 6-16 for more
information.

You can put the class files your application uses into a JAR file, but
remember that the JAR file must be added to the class path on the
computer the application runs on.

If the class files are not in a JAR file, you can place the files in the
deployment directory, preserving the directory structure and case of
the class names
6-15

Chapter 6: Compiling, running, and deploying your program
4 On your local computer, test your application by running it from
outside of the Visual Cafe environment.

To run your application, type at the DOS command line:

java application-name

java invokes java.exe and, if needed, includes the complete path, for
example, \visualcafe\java\bin\java . Your application name is the
same as the name of the frame for the main application window
without the class extension; it is case-sensitive and you might need to
include the complete path.

For example:

\visualcafe\java\bin\java AmazingTour

5 Test your application from remote computers. You should also test it
with different operating systems.

Note: Your users need to obtain or you need to provide the Java
virtual machine and standard Java class files. The Symantec Java
virtual machine must be licensed from Symantec.

Determining what class files an applet or
application needs

You can learn what class files you need by creating a JAR file with the
Visual Cafe JAR utility or by using SJ.

Remember that when you deploy you need to keep the class directory
structure intact and you must use the same case in the class names. (Class
names are case-sensitive.)

Using the JAR command to get the class files your Java
program needs

When you create a JAR file by choosing JAR under the Project menu, Visual
Cafe adds the class files your Java programs require. You can use the JAR
file to deliver your Java programs, or expand the JAR file with jar.exe to
extract the class files from the JAR file. See “Creating a JAR file” on page 7-
10, and “Expanding a JAR file” on page 7-11 for more information.
6-16

Configuring UNIX-based Web servers
Using SJ to determine what class files your Java program needs

The sj.exe utility enables you to easily figure out which class files are
used by your applet or application. After your Java applet or application is
finished, enter the following command at the DOS prompt (make sure that
\visualcafe\bin is in your path):

sj.exe -make -cdb mainclass.cdb -depend listname.dep
mainclass.java

mainclass.java is the name of the main class Java file in your project.

listname.dep is the file where the list of classes used by your applet or
application will be generated. sj.exe also lists the name of the ZIP file (if
any) where the class file was found. This helps you figure out what class
files you would need to unzip from each class ZIP file used by your applet
or application. The filename must have a .dep extension.

Even though the standard java.* class files are logged in this file, you are
not actually required to copy those to your Web server for your applets, as
they are usually available with most Web browsers. For applications, the
standard Java class files are part of Java Runtime Environment, which you
can download from JavaSoft.

sj.exe takes additional command line options, so you can add additional
class paths, and so on. See Compiling from the command line, in Chapter
for more information.

Configuring UNIX-based Web servers
The following instructions for system administrators are guidelines only;
they have been tested with Apache. After this is set up, all applets in the
user’s home HTML directory would have access to the Symantec classes.

To configure a UNIX-based Web server:

1 Create a UNIX directory, such as /home/symantecclasses . Make sure
all users have read access to the directory.

2 Copy the Symantec directory, including all subdirectories, to this UNIX
directory. For Visual Cafe Pro applications that use database features,
you also need to unzip Dbaw.zip and Dbaw_awt.zip into the Symantec
directory and Sql.zip into a Symjava directory, which you must also
copy to the UNIX directory.
6-17

Chapter 6: Compiling, running, and deploying your program
3 Create a symbolic link from /home/symantecclasses/symantec to the
user’s home html directory. For example:

ln -s /home/symantecclasses/symantec

/home/joeuser/public_html

joeuser can now run applets from Web pages without the need to copy
the full Symantec class structure to his public_html directory.

Building your Java program
This section documents the commands of the Project’s File menu. The final
section of this chapter describes the use of the Messages window.

Many of the commands in this menu, such as Compile, operate on the
currently selected file or files. If the frontmost window is an Editor
window, the selected file is the source file in that window. If the frontmost
window is a Project window, all files currently selected in that Project
window will be affected.

Building your project with commands in the Project menu

The Project menu contains all the commands that turn source code into
object code. You use the commands in this menu to precompile header
files to allow for faster builds, to turn source code into object code, and to
link the object code in a project into an application or library.

You use the Project menu commands to perform the following primary
building functions:
6-18

Messages window
Execute

When you choose Execute, Visual Cafe compiles and runs the current
project with no debugging. Applets are run in the Symantec Applet viewer
by default. You set the default viewer in the Project tab of the Project
Options dialog box.

Run in Debugger

With this command, Visual Cafe runs the program in debug mode and
stops at the first breakpoint.

Step into

This command begins running the program by stepping into the first line
of source code. When used on an applet, this command takes you the
applet void init() method if one is implemented.

Build Applet/Application

You can build the applet or application with this command, but it does not
execute the resulting program after building it.

Compile

If the frontmost window is an Editor window or a Project window with one
or more source files selected, this command is named Compile. Selecting it
compiles the file (or files, if more than one source file is selected in the
Project window). If the frontmost window is an Editor window containing
a file that is not already in the Project window, the file is added to the
project if it is successfully compiled.

Parse All

Parses all files in the project.

Messages window
When an error (or warning) occurs while a compiler compiles or
precompiles a source code file, Visual Cafe displays the compiler’s message
in the Messages window for that file’s project. The Messages window
6-19

Chapter 6: Compiling, running, and deploying your program
opens automatically any time errors are detected during compilation. You
can also open the window by choosing Messages from the Window menu.

The contents of the Messages window are saved when the window is
closed and are displayed again when the window is next opened. The
Messages window displays compilation errors and warnings for all files in
the project. Each error or warning is displayed on two lines: the first lists
the file and line number where the error or warning occurred and the
second gives the message itself.

Error messages and warning messages for all files in the project are listed
in the Messages window. The most recent messages are displayed at the
bottom of the list. If a file for which the Messages window was displaying
errors or warning messages is recompiled, the existing messages are
deleted from the window and any new messages are added at the end of
the list.
6-20

C H A P T E R 7
Working with JavaBeans

One of the biggest endeavors of software developers has been to develop
a way to make source code reusable in other development projects that are
next door or across the Internet. With the development of object-oriented
programming and languages like Java, this endeavor is starting to pay
rewards.

JavaBeans and Java
Until recently, however, the Java language did not offer true reusability.
True reusability allows other developers to use your code without having
to recompile it for a particular platform. Moreover, true reusability means
that other developers can integrate your code into their projects without
having to recompile their source code. Thus, the JavaBeans API was
developed to help solve these issues in software development.

Here are some of the features of JavaBeans components (“Beans”) that
make them very attractive to software developers:
■ Beans are discrete. Beans are typically small and have very specific

functionality. Beans can be used with other Beans to make larger and
more complex Java programs. Note that although many Beans are
small, a Bean is not restricted in size. For example, a Bean could be a
spreadsheet or a fully functional spelling checker.

■ Beans have reusability. Beans can be reused over and over again in
unlimited numbers of Java programs. Examples of reusability are beans
that perform various financial transactions.

■ Beans can be configured visually in some kind of visual tool, such as
Visual Cafe. Bean properties can be easily configured to allow your
Java Bean to interact with other Beans that have specific properties.
7-1

Chapter 7: Working with JavaBeans
These specific properties can be passed on to a Java Bean builder
application, such as Visual Cafe.

■ Beans can communicate with other component models. For example,
you can construct Bean Bridges to interact with Microsoft’s Active X
modules.

JavaBean terminology
Throughout this manual (and in other trade publications) the terms
JavaBean, JavaBeans component, and Bean all refer to the same thing.
Also keep in mind that the term JavaBeans typically refers to the
component technology itself and not to multiple Beans.

Basic JavaBean structure
In the simplest sense, a JavaBeans component consists of two fundamental
parts: methods and data. This is no different than other objects in object-
oriented environments. The data portion of the Bean describes the Bean’s
state, the methods provide the interface to manipulate the Bean’s state.

In addition, a Bean is capable of responding to events.

A Bean’s methods can be public or private. A Bean’s public methods are
often grouped together according to their functionality. These groups are
know as interfaces. It is through these interfaces that the Bean
communicates to the outside world.

The JavaBeans services
For all the fantastic things that JavaBeans components can accomplish, you
might think that there is some highly complex system at work. Actually,
Beans have been designed to be fairly simple to use. This lack of
complexity is the power of the JavaBeans API.

The JavaBeans API is an extension of the Java language. JavaBeans is
ultimately a programming interface which means that all of its features are
implemented as extensions to the Java class library. Specifically, the
component model that is described by the JavaBeans specification contains
five major services:
■ Property Management
7-2

The JavaBeans services
■ Introspection
■ Event handling
■ Persistence
■ Application builder support

Property management

Properties of a Bean reflect the internal state of a Bean and constitute the
data part of the Bean’s structure. Properties are discrete, named attributes
of a Bean that determine its appearance and behavior. Properties include
attributes that are associated with the Bean, such as color, size, or the label
string.

Properties can be changed in a number of ways: at runtime through setter
and getter methods; by scripting; or by the BeanInfo Editor.

The following are some examples of how Bean properties can be accessed:
■ Programmatically via public accessor methods
■ Visually through Visual Cafe’s property sheets
■ Through persistent storage and retrieval of a Bean
■ As object fields in scripting environments (VBScript or JavaScript)

Accessor methods

Accessor methods are the primary means by which a Bean’s properties are
exposed. An accessor method is a public method defined in the Bean that
reads/writes the property value.

An accessor method is a public method defined in the Bean that reads and
writes the property value in the Bean. A Bean property typically has a pair
of accessor methods called getter and setter methods. A getter method gets
(reads) the property value; a setter method sets (writes) the property value.
Each property must have a getter method, the setter method is optional
(although typically included). The getter method returns the property
value, the setter method sets the property value.

Indexed properties

In addition to single-value properties, JavaBeans supports indexed
properties—properties that represent an array of values. Indexed properties
7-3

Chapter 7: Working with JavaBeans
in Beans are similar to indexed properties in Java, you access a specific
value using an integer index into the array.

Indexed properties are useful when a Bean needs to maintain a group of
properties. For example, a Bean may want to maintain an array of the
methods of another Bean obtained through introspection of that other
Bean.

Bound and constrained properties

JavaBeans supports two advanced level mechanisms for working with
properties—bound and constrained properties. A bound property is a
property that provides notifications to any interested party when the
property value changes. A constrained property enables an interested party
to perform a validation on a new property value before accepting the
change.

Actually, any property can be designated as bound or constrained. Bound
and constrained properties provide notifications to an interested party
based on changes to that party. An interested party is an application,
applet, or another Bean that needs to know about changes in the property.

Bound properties are defined at the component level, meaning that the
Bean is responsible for specifying that a property is bound. For example,
the visibility property of a Bean could be a bound property

A constrained property enables an interested party to perform a validation
on a changed property value prior to the Bean accepting the change. A
constrained property is useful to enable an interested party to control how
the Bean is modified. For example, a date may be designated as
constrained where the application containing the Bean needs to limit the
valid range of dates.

Bound and constrained properties are not mutually exclusive. That is a
property may be designated as bound or constrained—or neither or both.

Introspection

Introspection is the ability for a Bean to make public (or “publish”) the
operations, methods, and properties it supports, as well be able to discover
operations, methods, and properties of other Beans.
7-4

The JavaBeans services
Note: Although the introspection services in JavaBeans is designed
primarily for use by application builder tools such as Visual Cafe, they are
a separate service because they can be used independently of Visual Cafe.

Introspection calls on two API processes: the Java Reflection API, and the
Java Serialization API. The Java Reflection API is a set of classes that look
into a class file and examines the properties, methods, events, and
properties of Beans. The Java Serialization API is used to store the class,
including its state. Visual Cafe uses these two Java API functions to allow
easy creation and modification of Beans.

Reflection and design patterns

Beans can determine information about a Bean’s properties, methods, and
events by analyzing the Bean using a set of low-level reflection services.
Reflection is the process of querying a Bean to determine information
about its public facilities and functionality.

These services gather the Bean’s information by applying simple design
patterns. Design patterns are rules used to determine information about a
Bean from its reflected method names and signatures. The JavaBeans
introspection facilities match them based on a specified design pattern of
the method names and automatically determine the property they access.

Design patterns rely on the convention of method names and signatures
conforming to a standard convention as defined in the JavaBeans
specification. This approach to introspection encourages Bean developers
to use consistent naming conventions.

Explicit Bean information

Design patterns are not required, or strictly enforced—you are free to use
whatever naming conventions you want. If you choose to do so, Beans
must use the explicit introspection facility. You must provide specific
information about the Bean including a property list, method list, and
event list. This information goes into a BeanInfo class that must be
included with the Bean in its Java Archive (JAR) file. Although this method
is not automatic, there may be some situations where this approach is
advantageous.
7-5

Chapter 7: Working with JavaBeans
The Introspector

The Introspector service provides the facilities to consolidate these two
approaches. First, the introspector traverses the inheritance tree of a Bean
trying to determine the explicit Bean information for all parent Beans. If at
any point, the explicit information is undefined, the introspector reverts to
the reflection services using design patterns to determine the external Bean
information.

The JavaBeans Introspector Service provides the best of both worlds. First
it tries to use information explicitly provided by the Bean’s developer. If
that information is not provided, the introspector relies on design patterns
to try to get the Bean information that way.

Finally, the introspector supports a combination of the two approaches.
For example, the methods in a Bean could be explicitly defined in the
BeanInfo class, but the events and properties could be determined using
design patterns.

Event handling

A Java Bean must have a system of event handling for the methods of one
Bean to call the methods of another Bean. The event handling facilities
determine how Beans respond to changes in state and how these changes
propagate to applications (and other Beans). The event handling in
JavaBeans works with the concepts of event sources and event listeners.

An event source is a Bean capable of generating events. An event listener is
an application (or Bean) capable of responding to events. An event state
object is used to store information associated with an event.

Event sources and event listeners are connected using an event registration
mechanism that is part of JavaBeans. This registration links the source with
one or more listeners. When the source generates an event, a designated
method is called on the listener with an event state object sent as an
argument. Event state objects carry information related to the event with
them.

Unicast and multicast event sources

In practice most event sources are multicast event sources. That is, more
than one listener can be registered with the event source.
7-6

The JavaBeans services
A unicast event source is an event source that can generate events for a
single listener. Multicast event source is an event source that can generate
events for more than one listener.

The main difference between the two is that a unicast event source throws
an exception when an attempt is made to register more than one listener.

Note: You should avoid using unicast event sources unless there is a
specific reason to do so.

Event adapters

JavaBeans provides the event adapter mechanism for those situations
where you need more control than the standard source/listener model
provides. Event adapters sit between a source and its listeners, providing
specialized event delivery behavior. An event adapter is an intermediary
placed between an event source and listener that provides additional event
delivery behavior.

Event adapters allow you to implement highly specialized event handing
tailored to unique application design.

Persistence

Persistence is the ability for the component to remember and store the
state of the component long after you are finished working with it. When
you change the state of your Bean, you might want your Bean to store or
persist the changed state. Bean states can change because of some action
affecting it during development or runtime.

There are two ways to store Beans: automatically through the Java Object
Serialization mechanism, or through a future externalizing stream that
permits the Bean total control of its persistence.

Beans store information about their internal state such as their properties
and their look and feel so that the Bean can easily re-create itself when
necessary. Also, a Bean can store the properties of other Beans that it
references, but this practice can be dangerous because the referencing
Bean assumes that the other Beans have persisted themselves.
7-7

Chapter 7: Working with JavaBeans
Bean storage

Beans are stored in JAR (Java ARchive) format. These JAR files are Zip files
that contain another component called a manifest file. This manifest file
contains additional information about what else is in the JAR file.

Application builder support

The application builder support service that is built into JavaBeans is what
enables Visual Cafe to smoothly integrate your Bean into your container
(application or another Bean). These facilities are what enables Visual Cafe
to construct your Bean with little or no programming effort.

An intended side effect of the application builder support is the separation
of design-time and run-time code. It would be wasteful to bundle the
design-time specific code with your Bean for distribution (think of the Web
bandwidth). Separating the design-time code into a separate file solves this
problem.

Property editors and sheets

Visual Cafe supports the editing and manipulation of a Bean’s properties
through property sheets. A property sheet is a Visual Cafe user interface that
contains property editors for each of the exported properties of the Bean.
A property editor is a Visual Cafe user interface that enables the visual
editing of a single property.

Creating a Bean
A Bean is typically a small development project, in terms of the volume of
code. However, you want to design your Bean to be reused—that’s one of
the main reasons for creating Beans. It is important for you to fully evaluate
the functional specifications of the Bean before you begin writing any
code. This has always been good programming practice, however it is
especially crucial because of the nature of JavaBeans components and how
they are used. For example, you want your Bean to be backward
compatible as it evolves so you need to make sure that the interfaces to the
Bean are extensible enough to provide room for added functionality.
7-8

Adding and using Beans in Visual Cafe
Bean design fundamentals

The design process does not need to be complex. At a minimum you
should consider questions such as the following:

What does the Bean do?

The answer to this question helps you to clearly identify what the Bean is
to accomplish as a reusable piece of software.

How is the Bean used?

The answer to this question depends upon the functionality you have in
mind. For example, you might be planning a Bean as a specific part of an
application. It might be visible or non-visible. It might be a customizable
component.

No matter what you are planning for the Bean, be sure you have a good
idea of how the Bean is to be used by the end user.

How might the Bean be modified?

This question is typically overlooked by Bean developers. You should try
to determine potential upgrade features or changes and how those relate to
the current state of the Bean. Performing this exercise might reveal that a
small change in the design may provide for increased adaptability.

What kind of Interface does your Bean need?

How will your Bean need to get input and handle event notification?

Testing your Bean

As you develop your Bean, you can incrementally test and debug the
functionality using Visual Cafe. Visual Cafe is a feature rich development
environment for creating applications with Beans.

Adding and using Beans in Visual Cafe
You can add Beans to the Visual Cafe environment as a class, from within a
zip, or from a JAR file. You add the Bean from the Add Bean command
from the Edit menu.
7-9

Chapter 7: Working with JavaBeans
A Java Archive (JAR) file is a compressed archive file that complies with the
JavaBeans standard. It is the primary method for delivering JavaBeans
components.

A JAR file contains one or more related Beans, and any support files,
including classes, icons, graphics, sounds, HTML documentation,
serialization files, and internationalization files. A JAR tool, called jar.exe
on Windows computers, archives and extracts JAR files and is provided
with JDK 1.1.

Using JAR files

In Visual Cafe, to use the JavaBeans components in a JAR file, you must
first add the file to the Component Library. Then you can add the
components to your projects. If HTML documentation was included in the
JAR for a Bean and you want to look at it, you need to expand the JAR by
using jar.exe .

Creating a JAR file

Creating a JAR involves adding a class, classes, a zip file, or a JAR file to the
Components folder. You then open the Beans tab in the Preferences dialog
box and select the class or classes that you just added to the Global
Classpath. The Beans are introspected and show up in the Component
Library and optionally in the Component Palette. By default all extensions
of java.awt.Component should show up without much intervention
from you.

Visual Cafe provides a tool you can use within its environment to quickly
create JAR files.

To create a JAR file:

1 While the project you want to work with is active, choose the JAR
command from the Project menu.

2 In the JAR name field, type the name and full path that you want the
JAR file to have. Click … to browse.

Note: You cannot add to an existing JAR file, but you can create a
new JAR file.

3 Click More to display the files and set options for them.

The JAR utility sets up much of the JAR for you.
7-10

Converting components (description files) to JavaBeans
Initially, the display includes all of the classes in your project, any
classes they depend on, and other files you have added to the project.
Graphics files associated with Visual Cafe components might also be
added for you.
■ To add more files, click Add Files and select the files to add.
■ To remove a file, select the file and click Remove.

4 Select a file to specify options for it:
■ Select Is Bean if the class is a Bean.
■ Select Design Time if it is a class only needed at design time, such

as a BeanInfo file.
■ To specify dependencies within the JAR, click Depends and select a

file that the class depends on, such as a graphics file or another
support file. (It will appear subordinate to the class in the display;
this command is the same as the depends flag in the manifest file.)
A file must be added to the JAR before you can specify
dependencies with it; clicking Depends does not let you add files.

5 Click OK to create the JAR.

Expanding a JAR file

Visual Cafe provides a tool you can use within its environment to quickly
create JAR files. To expand JAR files, use the jar.exe utility in the
java\bin subdirectory. For example, to expand the file Amazing.jar ,
enter the following at a DOS prompt:

jar -xf Amazing.jar

Converting components (description files) to
JavaBeans

In previous versions of Visual Cafe, you needed to create a separate
description file with an extension of .desc . This file contained the explicit
instructions on how the Bean was supposed to function and what results to
expect.

With a Bean, description files are no longer needed, and if you want to
reuse a component that you developed previously, or to use third-party
components, you need to convert your description file to a Bean. Visual
Cafe has a utility called the Description File Converter to help you with the
conversion process.
7-11

Chapter 7: Working with JavaBeans
Visual Cafe provides a utility for converting Visual Cafe description files so
you can implement the JavaBeans standard with your custom components.

To convert a component to a Bean:

1 Run the Description File Converter.

To do so, double-click the DescToBeanInfo.bat batch file, which
is in the bin\DescFileConverter directory of the main Visual
Cafe directory.

The Description File Converter dialog box appears. You can view the
Java version by going to the Help menu and choosing Environment.

2 Click the Location tab.

3 In the Description File Directory field, specify the full path to the
directory containing one or more description files you want to convert.
You can use the Browse button to specify the directory.

4 If the component icons are with the description files, select .ico Files
Are With .desc Files. Otherwise, in the Icon File Directory field,
specify the location of the corresponding icon files, if present.

5 In the Output Directory field, specify the full path to a directory where
you want your output files (BeanInfo and gif) to go.

When the description file is converted, the name of the output file is
the first part of the Bean name (without the extension) appended with
BeanInfo.java ; the icon files are converted to gif files.

6 Select relative or absolute.

If you select relative, the fully qualified class name is used to create a
directory structure subordinate to the output directory. For example, if
the output directory is c:\temp and the class name is
symantec.beans.Beans , Beans.java will be placed in the
directory c:\temp\symantec\beans .

If you select absolute, all files are placed in the directory you specify.
This could potentially cause file name conflicts, because the package
directory structure is not preserved.

7 Click the Selection tab and select the files you want to convert. Shift-
click to select multiple files. Click Select All Listed Files to select all
files.

8 From the File menu, choose Convert.

A dialog box appears when the conversion is complete. The files
display in the output directory; if the path was relative, the files are in
a directory subordinate to the output directory. For each component
entry in a description file, a BeanInfo.java file is created. For each
7-12

Adding a JavaBeans component to the Component Library
icon file, a 16 by 16 and 32 by 32 GIF file is created. For the latter, the
16 by 16 image is expanded to a 32 by 32 size.

Adding a JavaBeans component to the
Component Library

You might get a Bean from your colleague, from your favorite software
source, or even from the Internet. Where do you put it?

To use a JavaBeans component, you must add it to the Component Library.
You can add class or JAR files. The Bean must comply with the JavaBeans
standard for it to be added. After you add a Bean:
■ The component appears in the Component Library.
■ If an icon was specified in the BeanInfo file, the component uses

that icon. If the BeanInfo getIcon method returns NULL, Visual
Cafe uses the icon of a base class already in the Component Library.
Visual Cafe examines the classes the JavaBeans component inherits
from, and picks the class deepest in the inheritance hierarchy. The icon
of this class is used with your new JavaBeans component.

■ If the get and set methods conform to the JavaBeans design pattern,
the component properties will appear in the Property List window.

■ Visual Cafe derives the interactions displayed in the Interaction Wizard.
It determines the interactions in one of two ways:
■ The interactions are specified directly in the BeanInfo class.
■ Visual Cafe uses introspection to look at the public methods and

derives interactions from them.

To add a JavaBean to the Component Library:

1 Make sure the component class or JAR file is in the location you want
to store it.

Note: For class files, this location must be in your class path. For
example, c:\VisualCafe\java\lib is in your class path. Remember
that class files are case-sensitive. If you want to add the class file to
a package, the class file must be in the package directory.

2 Display the Component Library by choosing going to the Window
menu and choosing Component Library.
7-13

Chapter 7: Working with JavaBeans
3 From the Insert menu, choose Component into Library. This menu
item is available only when a project is open.

An Open dialog box appears.

4 Select the class or JAR file, then click Open.

For a class file, an Add to Library dialog box appears.

For a JAR file, Visual Cafe inserts the Beans into the Component
Library. The Beans are put in a group with the same name as the JAR
file, unless another group name was specified in the Bean.

5 For a class file, select a group, then click OK.

The component appears in the Component Library.

6 If you want to add the component to the Component Palette, select the
component in the Component Library, right-click over the component,
and choose Add to palette from the pop-up menu.

The component is added to the Component Library. You can verify that it
is there.

Here are some considerations about inserting Beans:
■ If Visual Cafe does not accept the Bean, it is not added to the

Component Library. It most likely does not comply with the JavaBeans
standard.

■ If you modify a JAR file after it is in the Component Library, the change
is not recognized until you restart Visual Cafe, or you delete the JAR
and add it to the Component Library again.

■ After you insert a JAR file, you should not move it to a new location. If
you move it, Visual Cafe will be unable to find it.

Creating a JavaBean component
You can create JavaBeans components within the Visual Cafe environment.
Visual Cafe provides tools to make your job easier. However, realize that
you must be very familiar with the JavaBeans standard before you attempt
to create custom JavaBeans components.
7-14

Adding Visual Cafe information to a JavaBean
Tip: You can create a component template by dragging a
component from the Project window (Objects view) to the
Component Library. The source file is copied by Visual Cafe, so
you do not have to keep the files in the same location. A
component and a component template appear the same in the
Component Library, and you add them to projects in the same
way.

1 Create a new project for developing one or more JavaBeans
components.

You can start with the Basic JavaBean project template to get started
quickly. See Chapter 3, “Working with projects and workspaces.”for
more information on starting a project.

2 If you are converting a custom component that has a description file,
convert the description file. See “Converting components (description
files) to JavaBeans” on page 7-11.

3 Create the Bean according to the JavaBeans standard.

This step includes adding to the project any support files, such as
classes, icons, graphics, sounds, HTML documentation, serialization
files, and internationalization files. If you add support files to the
project, they are automatically included when you create a JAR file
from the project with the Visual Cafe JAR utility.

4 Optionally add to the BeanInfo some information for better
integrating into the Visual Cafe environment. “Adding Visual Cafe
information to a JavaBean” on page 7-15.

5 To package the Bean(s) in a JAR file, choose JAR from the Project
menu. See “Creating a JAR file” on page 7-10

6 To use and test the Bean within the Visual Cafe environment, add it to
the Component Library. See “Adding a JavaBeans component to the
Component Library” on page 7-13

Adding Visual Cafe information to a JavaBean
JavaBeans has introspection, the ability to read JavaBeans classes directly
with the Core Reflection API using the Introspector class. This information
is stored in a BeanInfo object and includes data such as properties,
events, and all the accessible methods. In addition, you can add
information about how a Bean should integrate into the Visual Cafe
environment. The integration information is provided through two Visual
7-15

Chapter 7: Working with JavaBeans
Cafe classes: symantec.itools.beans.SymantecBeanDescripto r
and symantec.itools.beans.ConnectionDescriptor .

A quick description and code samples follow; for more information, see
the Java API reference, which is available from the Help menu.

SymantecBeanDescriptor

The SymantecBeanDescriptor class extends from
java.beans.BeanDescriptor and is the main way to supply Visual
Cafe integration information. The SymantecBeanDescriptor methods
let you tell the Visual Cafe environment about the following:
■ The name of a Component Library group (folder) to put the Bean in
■ The name of a Component Palette tab to put the Bean in
■ Whether to not allow users to drop other components into this Bean (if

this Bean derives from java.awt.Container)
■ Visual Cafe flags, such as INVISIBLE for specifying invisible

components
■ Visual Cafe connections (used by the Interaction Wizard) that are not

tied to a specific method

ConnectionDescriptor

The ConnectionDescriptor class extends from
java.beans.FeatureDescriptor . A ConnectionDescriptor
encapsulates a Visual Cafe connection, which is used by the Interaction
Wizard. A Visual Cafe connection defines an interaction, or connection, for
a Bean. It implies a relationship between objects (or between an object and
itself) involving either event notification or data transmission. The
Interaction Wizard allows users to graphically build these relationships
between objects, and Visual Cafe is able to generate the code for the
specified relationship based on the underlying connection information
encapsulated in the ConnectionDescriptor.

The connection is made of five pieces:
■ Form – Determines whether the value of a connection is INPUT or

OUTPUT. An input connection defines an interaction that sets data or
initiates the execution of a method; an output connection defines an
interaction that returns data.

■ Type – Sets the Java type of the input or output value of the
connection.
7-16

Adding Visual Cafe information to a JavaBean
■ Expression – Defines the code that is generated to create the
connection. Properties and the following replacement variables are
allowed in the code string:
■ %name% – name of the class/component
■ %class % – full class name of the class/component
■ %arg % – method argument used for output connection data

■ Initialization – Defines any initialization code that needs to be
present prior to the code generated from the connection expression.

■ Description – Supplies an English description of the connection. This
string appears in the Interaction Wizard. %class % is allowed.

A Visual Cafe connection looks like a method call. However, a connection
can be more than that. It can be a “meta-method.” Any valid code
expression can be used to generate the connection, for example, the
connection “Toggle pause” might have

%name%.setPaused(!% name%.isPaused());

as the code expression. (In this expression, %name% is a replacement
variable for the name of the component class). A connection does not have
to be tied to a method, for example, the connection “Point the button
arrow LEFT” might have the code expression %name%.LEFT.

The ConnectionDescriptor methods allow you to set the form, type,
expression, initialization, and description of a particular connection. If a
connection is tied to a specific method, its ConnectionDescriptor is
associated with that method’s MethodDescriptor . Currently, the
association uses the MethodDescriptor ’s inherited method setValue ,
passing in a Vector of all ConnectionDescriptor objects to be
associated with that method. All connections that are not tied to a specific
method have their ConnectionDescriptor objects associated with the
Bean’s SymantecBeanDescriptor object.

Code samples

Following are three code samples that show three different ways of
implementing the BeanInfo information specific to Visual Cafe. Here is
the first sample:

public BeanDescriptor getBeanDescriptor() {

SymantecBeanDescriptor bd = new
SymantecBeanDescriptor(beanClass);
7-17

Chapter 7: Working with JavaBeans
bd.setCanAddChild(false);

bd.setFolder("Additional");

bd.setToolbar("Additional");

bd.addConnectionDescriptor(new ConnectionDescriptor("output",
"int", "",

"%name%.BORDER_REGULAR",

"BORDER_REGULAR"));

bd.addConnectionDescriptor(new ConnectionDescriptor("output",
"int", "",

"%name%.BORDER_NONE",

"BORDER_NONE"));

return (BeanDescriptor) bd;

}

Here is a second style:

ConnectionDescriptor cd = new ConnectionDescriptor();

cd.setForm(ConnectionDescriptor.OUTPUT);

cd.setType(“int”);

cd.setExpr(“%name%.BORDER_NONE"”);

cd.setShortDescription(“BORDER_NONE”);

bd.addConnectionDescriptor(cd);

Here is a third style:

ConnectionDescriptor cd = new
ConnectionDescriptor(ConnectionDescriptor.OUTPUT);

cd.setType(“int”);

cd.setExpr(“%name%.BORDER_NONE"”);

cd.setShortDescription(“BORDER_NONE”);

bd.addConnectionDescriptor(cd);

Adding JavaBeans to the Component Library
To use a JavaBeans component, you must add it to the Component Library.
You can add class or JAR files. The Bean must comply with the JavaBeans
standard for it to be added. After you add a Bean:
■ The component will appear in the Component Library.
7-18

Adding JavaBeans to the Component Library
■ If an icon was specified in the BeanInfo , the component uses that
icon. If the BeanInfo getIcon method returns NULL, Visual Cafe
uses the icon of a base class already in the Component Library. Visual
Cafe examines the classes the JavaBeans component inherits from, and
picks the class deepest in the inheritance hierarchy. The icon of this
class is used with your new JavaBeans component.

■ If the get and set methods conform to the JavaBeans design pattern,
the component properties will appear in the Property List window.
You can edit custom properties as a text field, a drop-down list, or in a
dialog box, depending on the property. The dialog box appears if you
click a field value, then click the … button.

■ Visual Cafe derives the interactions displayed in the Interaction Wizard.
It determines the interactions in one of two ways:

■ The interactions are specified in the BeanInfo class.
■ If the interactions are not specified in the BeanInfo class, Visual Cafe

uses introspection to look at the public methods and derives
interactions from them.

To add a JavaBeans component to the Component Library, follow these
steps:

1 Make sure the component class or JAR file is in the location you want
to store it.

Important: For class files, this location must be in your class path.
For example, \VisualCafe\java\lib is in your class path.
Remember that class files are case-sensitive. If you want to add the
class file to a package, the class file must be in the package
directory.

2 Choose Insert Component into Library. This menu item is available
only when a project is open.

An Open dialog box displays.

3 Select the class or JAR file, then click Open.

For a class file, an Add to Library dialog box displays.

For a JAR file, Visual Cafe inserts the beans into the Component
Library. The beans are put in a group with the same name as the JAR
file, unless another group name was specified in the Bean.

4 For a class file, select a group, then click OK.
7-19

Chapter 7: Working with JavaBeans
The component appears in the Component Library. You should verify
that it is there. (You can display the Component Library by choosing
Window, then Component Library.)

Notes:
If a Bean is not added to the Component Library, it most likely
does not comply with the JavaBeans standard.

If you move or modify a class or JAR file after it is in the
Component Library, the change is not recognized until you restart
Visual Cafe, or you re-add it.

Some components are made of more than one class file, such as if
the Java source file for a component has inner classes. You need to
make sure these class files are in the class path. You do not need
to add inner classes to the Component Library.

Deleting JavaBeans from the Component Library
As you are developing your project, you can delete user-created objects in
the Component Library. Deleting a component from the Library also
removes the component from the Palette.

To delete a JavaBean from the Component Library:

1 In the Component Library, select the object to be deleted.

2 From the Edit menu, choose Cut; or press the DELETE key.

Viewing and changing JavaBean properties
Each JavaBean has a set of properties that define its look and behavior.
Visual Cafe provides a Property List from which you can directly modify
these properties. When you change a property, the source code and Form
Designer are immediately updated.

To view or change the properties of JavaBeans in a project, select one or
more components in the Form Designer or Project window.

To view or change the properties of JavaBeans in the Component Library
and Palette, select one or more JavaBeans in the Component Library.
Remember that if you change the properties of a component in the
Component Library, the change now appears every time you add that
7-20

Packaging and deploying JavaBeans
component to a project. Any projects that already contain the component
before the change are not affected.

To modify JavaBean properties:

1 To display the Property List, Go to the Window menu and choose
Property List.

2 Select a component in the Form Designer, Project window, Component
Library, or from the Property List pull-down menu. To select multiple
components, CONTROL-click in the Form Designer, Project window,
or Component Library, or Shift-click or drag in the Form Designer.

When multiple components are selected, only their common
properties are shown and editable. In the Property List, you see the
heading title “Multiple Selection”.

3 To edit a property, click the right column, double-click the left column,
or use TAB in the Property List.

The right column displays a list of valid values or makes the text string
editable.

Properties with multiple values are marked with a plus sign (+); for
example, the Font property. Click the + to expand the list.

Properties that are defined using a dialog box are marked with the
ellipsis button (…). Click the … button to get the dialog box.

4 Press ENTER or click somewhere else to make the change.

Tip: Press ESCAPE to cancel an edit and return the property to its
previous value.

Packaging and deploying JavaBeans
Visual Cafe provides a utility to help you deploy your JavaBeans and other
Java programs. With the SJ.EXE utility, you can put your Java program
into a tidy package for deployment and distribution.

Visual Cafe’s tools for building Beans
With Visual Cafe, you are able to create Beans and add descriptive
information (modify BeanInfo) about them to better fit the environment
in which you are going to deploy them. The descriptive information is
exportable to other environments.
7-21

Chapter 7: Working with JavaBeans
You can also use existing Beans and add descriptive information (modify
BeanInfo) about them to better fit the environments in where you are
going to deploy them. The descriptive information is exportable to other
environments, unless the Bean has an explicit BeanInfo , in which case
the information is exportable only to other users of the Visual Cafe 2.0
environment.

Bringing Beans into the Visual Cafe environment

There are a number of ways a Bean can exist before it is brought into your
Visual Cafe environment. Here are some common Bean cases:
■ A Bean comes in as a class file with no explicit BeanInfo
■ A Bean comes in as a class file with a BeanInfo that is not a subclass

of symantec.itools.beans.BeanInfo
■ A Bean comes in as a class file with a BeanInfo that is a subclass of

symantec.itools.beans.BeanInfo
■ A Bean comes in with source or is created within us and has a

BeanInfo that is not a subclass of
symantec.itools.beans.BeanInfo

■ A Bean comes in with source or is created within us and has a
BeanInfo that is a subclass of
symantec.itools.beans.BeanInfo

BeanInfo for standard AWT components

The symantec.itools.beans.infos class contains
symantec.itools.beans.BeanInfo classes for the standard AWT
components. Visual Cafe 2.0 adds the
symantec.itools.beans.infos to the BeanInfoSearchPath
through the setBeanInfoSearchPath method of Introspector.

Bean associates
A Bean will have a number of files that will be associated with it. If a Bean
has an explicit BeanInfo class, then this is one. If a Bean has one or more
Resource bundles associated with it then this/these is also one. An explicit
BeanInfo may also have associated files .gif , .jpg , or resource
bundles - these are also regarded as associates of the Bean. Associated
.gif and .jpg files are added to the project and should appear anywhere
every file that is added to the project appears.
7-22

Bean associates
Appearance

Bean Associates do not appear in the object view (see target customer).
They do appear in the packages and file views where appropriate.

Renaming a Bean

When a Bean is renamed, Bean Associates that are found through some
mangling of the Bean name need to be renamed as well. The explicit
BeanInfo of a Bean and any associated ResourceBundles would be
examples of these.

Hierarchical properties

Expansion of hierarchical properties will occur in the
symantec.itools.beans.BeanInfo class.

Internationalization properties

Internationalization properties will have a derivable key for the resource
bundle. This will be membername + _ + name of property.
7-23

C H A P T E R 8
Debugging Java Programs

After writing a program, it is not unusual to find that it doesn’t work the
way that you expected. Just because a program compiles without errors,
does not mean that it will work correctly. Finding and correcting problems
within a program is called debugging. When you run your program, you
may encounter a variety of errors, including compile errors (code
construction, syntax errors), run-time errors that occur after you start the
program (dividing by zero or writing to a file that doesn’t exist), and logic
errors (program doesn’t do what you want it to do).

The Visual Cafe Debugger:
■ Provides a Windows graphical user interface
■ Provides a graphical representation of data structures
■ Supports breakpoints
■ Lets you drag and drop to execute commands
■ Supports incremental debugging, allowing you to make changes while

a program is paused in the debugger and continue running with the
new changes

■ Provides a Messages window separate from the Debugger, to display
the status of your debugging session.

Note: Your program must successfully compile into a .class file before
the Debugger can open it.

When you run the Debugger, Visual Cafe switches into debug mode. While
you are in debug mode you cannot compile your source files, or rebuild
your project. To try out your code changes you must first stop the
8-1

Chapter 8: Debugging Java Programs
Debugger and recompile your program. Once the program has recompiled,
you may restart the Debugger.

Using the Debug workspace
After building your project you can enter debugging mode by choosing
Project, then Run in the Debugger.

The Debug workspace is automatically loaded, but not enabled by default.
The Debug workspace includes the Call Stack, Variables, Messages, and
Breakpoints windows, which are opened automatically in the same size
and position as they were when the project was last run.

While debugging your program, you can use the Source, Class Browser,
Breakpoints, Variables, Call Stack, Threads, and Messages windows to help
you isolate problems and resolve them. The Source and Class Browser
windows are available at all times; the other views are only available after
the debugger has begun to execute the program. Visual Cafe by default

Source Messages
window

Variables
window

Call Stack
window

Breakpoints
windowwindow
8-2

Using the Debug workspace
runs your Java program in the Applet Viewer. By running your program in
the Applet Viewer, Visual Cafe eliminates the need for you to compile the
.class file, open a Java-compatible Web browser, write the corresponding
HTML code and load it into the Web browser, and reload the applet over
and over again.

The Debugging views consist of the following windows.

Overview of the Breakpoints window

The Breakpoints window is used to display a list of breakpoints currently
set in the source code. Breakpoints are flags you can insert into the code at
specific points that cause the program execution to pause. When the
Debugger goes through the instructions, it stops whenever it encounters a
breakpoint. You can check on the value of the data and other program
conditions.

The Breakpoints view allows you to view a list of all breakpoints in the
currently active project. It lists source file and line number of the
breakpoint. The current breakpoint is highlighted in the highlight color.
The check column can be used to enable and disable listed breakpoints.
Double-clicking on a breakpoint in the Breakpoint window goes to the
source file and displays the selected breakpoint.

The Breakpoints window is accessible through the Breakpoints menu item
in the Window menu.

Overview of the Variables window

Your program’s variables are displayed in the Variables window, which
displays local variables, global variables, and objects that are local to the
current method. You can examine objects and array data elements as well
as simple data types.
8-3

Chapter 8: Debugging Java Programs
When you pause the execution of your program, you can modify the value
of a variable and then continue execution with the new value in place.

You can modify the value of a variable from either the Variables window or
the Watch window.

The Variables window is accessible through the Variables menu item in the
Window menu.

Overview of the Watch window

The Watch window lets you specify variables and expressions that you
want to watch continuously while debugging your program. In this
window, you can examine the contents of a class variable. To watch all the
variables accessible to a method, simply drag the method from the Call
Stack window into the Watch window. You can examine objects and array
data elements as well as simple data types.

You can add a variable name or an expression to the Watch window by
clicking in a cell and typing the name or expression. Variables can be
modified by double-clicking in the Value cell and entering a new value.
After modifying a variable, you can continue debugging from the current
line without having to stop and restart the debug session.

The Watch window is accessible through the Watch menu item in the
Window menu.

Overview of the Threads window

The Threads window displays the threads that your program has created. A
thread is a process that is controlled by your program. It is possible to
8-4

Using the Debug workspace
create programs that have more than one process (thread), running at the
same time.

Note: If you are using multiple threads in your program, each thread has
its own call chain. To see the call chain for an individual thread, drag the
thread from the Threads window and drop it on the Call Stack window.

The Threads window is accessible through the Threads menu item in the
Window menu.

Overview of the Call Stack window

The Call Stack window lists the method calls a program has made since it
began running. This list is known as the call stack. The methods in the call
stack are displayed in reverse order from the last (most recent) call on top
to the first (initial) call on the bottom. Each entry lists the name of the
method followed by the name of the class which contains the method.

The Call Stack window is accessible through the Call Stack menu item in
the Window menu.

Overview of the Messages window

This window displays all messages from Visual Cafe. For example, if an
error is encountered during parsing, the error message displays in this
window. You can customize what messages the Message window does or
doesn’t display. To customize the output to the Messages window, use the
Options menu item in the Project Menu. For example, one of the options in
the Options menu is the ability to turn off the Java compiler warnings.
8-5

Chapter 8: Debugging Java Programs
Another function of the Messages window is to notify you of any run-time
exceptions, as well as act as a standard output display device. You can
redirect textual information directly to the Messages window as you are
executing and debugging your Java program.

Double-click on any error message to open the file in the Source window
with focus on the selected error.

The Messages window is accessible through the Messages menu item in
the Window menu.

Overview of the Source window

The Source window is the primary debugging view: it is where you add,
edit, and view code. When debugging an application, Visual Cafe
automatically opens the Source window containing the current line of
code.

Running the Debugger
When you run your program in the Debugger, you hand control over to
the program and interact with it as a user, but you can still debug it. When
8-6

Running the Debugger
you run your program outside the Debugger, you are executing your
program as a finished program and you cannot break into debug mode.

In Visual Cafe, you can choose to run your program in one of four ways.
You can run your program:
■ until it terminates normally or reaches a breakpoint or an exception.
■ until execution reaches the cursor location in the Source window.
■ so it pauses as it is about to execute the first line.
■ from its current debug point until it terminates, ignoring any

breakpoints that are set.

Starting a debugging session

You launch the Debugger within Visual Cafe. Your project must be open in
the Project window, so the Debugger can have access to symbolic
debugger information.

To start a debugging session:

1 Open the project that you want to debug.

2 From the Project menu, choose Run in Debugger (or press F5).

Scrolling in the Source Editor

You can scroll through your code in the Source Editor and always have
immediate control over your program. You can configure the display of the
source code editor to assist you with the following tasks.

To scroll to a specific line in your code:

1 From the Object menu, choose Edit Source to open the source code
for your project.

2 From the Debugger’s Search menu, choose Go To Line (CONTROL-G).

3 When the dialog box is displayed, type the number of the line to
which you want to go.

4 Click OK.

To print the file displayed in the Source window, choose Print from the
Debugger’s File menu.
8-7

Chapter 8: Debugging Java Programs
To edit the file in the Source window, choose Edit from the Source menu.
Visual Cafe moves that project to the foreground and opens an Editor
window for the file.

To open a different source file in the Source window pane, click that
source file in the Project window, then choose Object, then Edit Source.

Using the Debug toolbar

The Debug toolbar provides easy access to the commands that you use
most often when debugging your program. From the Debug toolbar, you
can do the following:
■ Start a program
■ Pause a program
■ Stop a program
■ Step into a method
■ Step over a method
■ Step out of a method
■ Toggle a breakpoint
■ Evaluate an expression

For more information about using these commands, see “Stepping through
code” on page 8-8.

 Stepping through code
The Debugger uses several commands to control execution. To make it
easier to debug applications, you can invoke some of these commands by

Start a Stop a Step over Toggle a

Pause a Step into Step out of Evaluate an
a methoda method

a methodprogram program breakpoint

program expression
8-8

Stepping through code
choosing commands from the Debug menu, or using CONTROL-keyboard
equivalents.

To step through code:

Do either of the following:
■ Use the commands in the Debugger’s Debug menu.
■ Use the Debug Toolbar

Pausing a program

In Visual Cafe, you can pause a running program and switch to debug
mode. The effect on your program is the same as if a breakpoint is hit.

When an unhandled exception is encountered, the program pauses
automatically at the line where the error occurred.

Stopping a program

You can completely stop a program (as opposed to pausing temporarily).
Stopping a program terminates it completely in order to work further on it.
Execution of a stopped program cannot be continued, and must be
restarted from the beginning.

To stop debugging a program:

From the Debug menu, choose Stop Debugging.

Stepping into a method

After your code has hit a breakpoint, you can choose to single step by
stepping into any method call contained in the next line to be executed.
This causes the single step to land at the first line of the called method.

Using Debug > Step Into

If you are paused in Debug Mode, choose Step Into from the Debug menu
to start debugging and pause at the first line.

When used on an applet, this command takes you to the applet void
init() method if one is implemented.
8-9

Chapter 8: Debugging Java Programs
If the next line to be executed does not contain a method call, Step Into
performs a single step of the line.

Stepping over a method

You can step over a method call contained in your code after the Debugger
has hit a breakpoint. This causes the single step to execute the called
method in its entirety and land on the next line of code in your source.

Using Debug Step Over

If the next line to be executed does not contain a method call, Step Over
performs a single step of the line.

Stepping out of a method

If you hit a breakpoint in a method and want to execute the rest of that
method returning to the caller, you can choose to step out of the currently
executing method.

Toggling a breakpoint

Toggling a breakpoint is a quick way to reverse the state of a breakpoint
on any line of source code in the Source window.

To toggle a breakpoint in the Source window:

1 Click on the line where you want to toggle the breakpoint.

2 Click on (Toggle Breakpoint) the Breakpoint to turn it off in the Debug
Toolbar.

If the breakpoint is set, a red diamond appears in the left margin next
to the line of code; if it is reset, the red diamond is cleared.

Watching a variable

You can watch a variable or expression while debugging by adding the
variable name to the Watch window.

There are two ways to do this: directly from the Watch window, or from
the Variables window.
8-10

Stepping through code
Caution: Because the program is paused, do not enter a watch expression
that relies on calls to other components.

To watch a variable from the Watch menu:

1 From the Window menu, choose Watch to open the Watch window.

2 Type a variable name or an expression directly into the Watch field of
the Watch window.

To watch a variable from the Variables window:

1 Right-click on the variable you want to watch.

2 Choose Watch Variable from the context menu.

The Watch window evaluates and immediately displays the value of
the variable or expression.

To move through a block of code quickly:

1 Select a line.

2 From the Debug menu, choose Continue to Cursor.

The Debugger goes as soon as the command is selected. This
command has the same effect as setting a temporary breakpoint at the
selected line; that is, it starts execution of your code and stops at the
selected line.

To jump ahead to a selected line without executing any intervening
code, chose Skip To Here from the Debug menu. This allows you to
skip over code that you know contains bugs but that is not crucial to
the rest of the code’s operation.

Note: Use this feature with caution, especially when debugging
optimized code.

Running to the first line

Visual Cafe lets you run your program and pause just before the first line
executes. This puts you in debug mode before anything has been done to
your program’s state.

To run to the first line of the program:

From the Debug menu, choose Step Into.
8-11

Chapter 8: Debugging Java Programs
Running the program to the end

You can run your program from its current point until the end, ignoring
any breakpoints that are set. This allows you to check for any suspected
exception conditions.

To run to the end of the program:

From the Debug menu, choose Continue to End.

If any kind of exception occurs, the program will pause at the point of
the violation, unless otherwise specified. You can specify options for
handling exceptions in the Debugger Tab of the Project Options
window, then choose Category, then Exceptions.

Running to the cursor location

You can run your program until execution reaches the cursor location, after
which the program pauses. This is a handy way to continue from a
breakpoint to a line you are inspecting in the Source window. You can also
run to a cursor location without having to stop at all the breakpoints you
may have set.

To run to the cursor location:

From the Debug menu, choose Continue to Cursor.

If the selected line does not get executed before the end of the
program, your program won’t pause.

Resuming a program

You can resume execution when your program is paused because of a
breakpoint, an exception, or because you manually paused execution.
When you resume your program, execution is continued from the current
location.

To resume debugging a program:

From the Debug menu, choose Continue.

Restarting a program

Restarting a program is when you start execution over again from the
beginning. This is different from continuing a program where you restart
execution after a breakpoint.
8-12

Handling exceptions
To restart debugging a program from the beginning:

From the Debug menu, choose Restart.

When Restart is selected while a program is executing, it does a Stop > Run
in Debugger. Otherwise, it does a Stop, then Step Into.

Handling exceptions
The Java language uses exceptions as a means to process errors in its
programs. An exception is an event that occurs during the execution of
your program that interferes with, disrupts, or stops the normal flow of
instructions.

Throwing exceptions

Many types of errors force the Java run time system to throw exceptions—
from simple programming errors to a hard disk crash. When such an error
occurs within a Java method, the method creates an exception component
and passes it to the Java run time system. This exception component
contains important information about the exception, including its type and
the state of the program when the error occurred. The run time system tries
to find a piece of code to handle the error. This process of creating an
exception component and passing it to the Java run time system is called
throwing an exception.

Catching exceptions

After a method throws an exception, the Java run time system finds a way
to handle the exception. One set of possible tools to handle exceptions is
the set of methods in the call stack of the method where the error
occurred. The Java run time system scans backwards through the call stack,
starting in the method where the error occurred, until the Java run time
system locates a method that has a suitable exception handler. An
exception handler is suitable if the type of the exception thrown is the
same as the type of exception handled by the exception handler. The
exception moves up through the call stack until a suitable handler is found
and one of the calling methods handles the exception. This is called
catching the exception. If the runtime system searches all of the methods
on the call stack without encountering a suitable exception handler, the
runtime system as well as the Java program terminate.
8-13

Chapter 8: Debugging Java Programs
Setting exceptions in Visual Cafe
You can view and set the exceptions options by choosing Exceptions from
the Debug options drop-down list in the Project Options dialog box. To
stop whenever a particular exception occurs, check the box to the left of
the exception name. When this options is set, the program stops whenever
the exception is encountered regardless of whether your program handles
the error or not. The default behavior for exceptions is for the Debugger
only to stop if a particular exception is not handled in the source code.

When running your program, you can choose to have all exceptions break
into the Debugger, or to have only unhandled exceptions break into the
Debugger.

To prepare to handle exceptions:

1 From the Project menu, choose Options.

2 In the dialog box that appears, click the Debugger tab.

3 Choose how you want to handle exceptions, and add exceptions to
the list.
8-14

Changing source code
To make all exceptions break into the Debugger:

1 Select the exception in the list.

2 Click in the Action column.

3 Click the down-arrow button and choose Stop Always.

To make only unhandled exceptions break into the Debugger:

Select the exception in the list.

You check a checkbox next to an item that you want ALWAYS to pause the
Debugger. The default behavior is for unchecked items to pause the
Debugger if they are not handled in source code.

The Restore Defaults button restores the defaults for all exceptions, thereby
disabling the stopping at exceptions (all checkmarks are deleted).

Changing source code
If there are syntax errors in your source code, Visual Cafe flags them in the
Messages window after a compile. You can easily navigate to each error
directly from the Messages window.

To navigate to each error from the Messages window:

1 From the Window menu, choose Messages to bring the Messages
window to the front.

2 Double-click on any error message to go to that error.

The file containing the error opens at the offending line within a Source
window. Once the file opens, you can work on your source code.

Using the Source window

The Source window is the primary debugging view, it is where you see
your code at its current point of execution. When you debug your
program, Visual Cafe automatically opens the Source window containing
the current line of code, if possible. Sometimes Visual Cafe can’t open the
Source window because you may not have all the source, for example.

When you are in debug mode, the Source window view provides extra
functionality allowing you to manipulate breakpoints and specify variables
to watch in the Watch window.
8-15

Chapter 8: Debugging Java Programs
Working with breakpoints
Watching an entire program execute from beginning to end helps you
understand the program flow. However, it is more likely that there are only
specific parts of the program which you want to observe. It makes sense to
step through the few specific lines of code which have behavior you want
to observe rather than the entire program. In these cases you can use
breakpoints.

A breakpoint is a flag (really a little piece of code) placed in the source
code that tells the Debugger to pause execution of the program. This tiny
piece of code is invisible to you, but it is represented as a diamond.
Breakpoints allow you to examine your program line-by-line as your
program executes in the debugger. The compiler recognizes the breakpoint
and treats it as a part of your program. Breakpoints are only important to
the compiler when you are testing and debugging your program.
Breakpoints are ignored when you compile your program into a finished
.class file.

You can set breakpoints anywhere in your code in order to stop execution
at a particular line and regain control after starting your program. When
your program breaks on a breakpoint you can examine variable values,
single step your program, or examine the state of your program in any way
you want.

In Visual Cafe, you can set a breakpoint on:
■ The current line in the Source window
■ A specific line number
■ A method name
■ The condition of a variable or expression

Tip: The fastest way to set a breakpoint is to position the cursor on the line
of code where you want the breakpoint to appear, then press the F9 key.
Managing breakpoints

Visual Cafe provides many ways to manage breakpoints, allowing you to
stop execution of a program at a specific location or on a predetermined
condition, such as a variable being assigned a particular value.

Breakpoints are manipulated from within the Breakpoints window, which
shows all breakpoints currently defined in your program. You can view or
8-16

Working with breakpoints
modify the different parameters of any breakpoint and enable or disable
the currently defined breakpoints.

Breakpoints are saved with the source and are made visible each time you
open the project. The state of each breakpoint—enabled or disabled—is
also saved with the project.

Currently, Disable Breakpoints are represented by hollow diamonds in the
Source window. Use the Breakpoint window to evaluate the state of
breakpoints in your program.

Setting a breakpoint on a line number

You can have your program break every time a specific line within your
current source file is about to be executed. You set breakpoints in the
Source Code pane of the Class Browser, or in a Source window.

The diamond indicators that appear to the left of each executable
statement indicate the places in the code where you have set breakpoints,
as shown in the following figure.

Breakpoint
8-17

Chapter 8: Debugging Java Programs
Setting simple breakpoints

You can set a simple breakpoint on a specific line within your current
source file.

To set a simple breakpoint:

1 Do either of the following:
■ Click a statement marker circle.
■ Click in the line to select it, then choose Set Breakpoint from the

Source menu.

The circle changes from light blue to red to indicate that a breakpoint
has been set.

2 From the Source menu, choose Set Conditional Breakpoint.

3 In the Break at panel, click on Line Number.

4 Enter a line number in the text box.

5 Click OK.

The breakpoint is added to the list in the Breakpoints window.

When code is running, the Debugger stops just before executing the first
statement where a breakpoint has been set. A set breakpoint is indicated
by a red circle to the left of the statement. The current statement arrow
points at that statement.

Setting a breakpoint on a method name

You can have your program break every time a specific method is
executed by setting a breakpoint on a method name.

To set a breakpoint on a method name:

1 From the Source menu, choose Set Conditional Breakpoint.

2 In the Break at panel, click on Method Name.

3 Enter a method name in the text box.

4 Click OK.

The breakpoint is added to the list in the Breakpoints window.
8-18

Working with breakpoints
Setting a breakpoint on a variable or expression

You can have your program break whenever a variable reaches a specific
value or an expression of your choice becomes true.

A breakpoint symbol in the left margin of the Source window indicates a
breakpoint on the adjacent line.

To set a breakpoint on a variable or expression:

1 From the Source menu, choose Set Conditional Breakpoint.

2 In the Break panel, click on When Expression Is True.

3 Enter a Boolean expression into the text box.

4 Click OK.

The breakpoint is added to the list in the Breakpoints window.

Setting a conditional breakpoint

A conditional breakpoint pauses the execution of your program when a
specified condition is met. In Visual Cafe, when you set a conditional
breakpoint, it is added to the breakpoint list in the Breakpoints window
along with the condition you specify.

To set a conditional breakpoint:

1 In the Source Code window, click on the line where the breakpoint
should occur.

2 From the Source menu, choose Set Conditional Breakpoint.

3 Click When Expression Is true.

4 Type your breakpoint condition into the text box. This condition must
be an expression that evaluates to true. When the expression is true,
the breakpoint occurs.

5 Click Add.

The breakpoint is added to the list in the Breakpoints window.

Modifying a conditional breakpoint

You modify a conditional breakpoint by changing the conditions of the
breakpoint in the Breakpoints window.
8-19

Chapter 8: Debugging Java Programs
To modify a conditional breakpoint:

1 Choose Breakpoints from the Window menu to display the
Breakpoints window.

2 Click on the Condition field of the breakpoint you want to change.

3 Type the new condition into the Condition field.

4 Press ENTER to save the change.

Clearing breakpoints

Clearing a breakpoint deletes it from the set of breakpoints you have
defined. This is distinct from disabling a breakpoint which retains it in your
breakpoint list in a temporarily disabled state.

You clear a breakpoint either at a source line (in the Source window or
from the Class Browser, or from the list maintained in the Breakpoints
window.

To clear a breakpoint at a line of source code:

1 Select the breakpoint by clicking in the line where your breakpoint is
set (the breakpoint is denoted with a stop symbol in the left margin).

2 From the Source menu, choose Clear Breakpoint.

To clear a breakpoint from the Breakpoints window:

Select one or more breakpoints in the list and press DELETE.

When the breakpoint is cleared, the stop symbol is removed from the
left margin of the line of source code, and the item is removed from
the Breakpoint window.

Enabling or disabling a breakpoint

The checkbox preceding each breakpoint in the Breakpoints window
indicates whether or not that breakpoint is enabled. When checked, the
breakpoint is enabled.

You can enable or disable a breakpoint by clicking on the breakpoint’s
checkbox, or by selecting the breakpoint and pressing the spacebar when
the breakpoint is selected.
8-20

Working with breakpoints
To enable a breakpoint:

Find the breakpoint in the list and click the empty check box
corresponding to that breakpoint. When the box is checked the
breakpoint is enabled.

To disable a breakpoint:

Find the breakpoint in the list and click the checked box
corresponding to that breakpoint. When the box is empty the
breakpoint is disabled.

To toggle a breakpoint using the spacebar:

You can press the SPACEBAR to toggle the state of a selected
breakpoint in the Breakpoints window.

Note: Disabling a breakpoint does not delete it from the
breakpoint list.

Ignoring all breakpoints

There’s an easy way in Visual Cafe to ignore all breakpoints you have set
without changing the state of any of the breakpoints in the Breakpoints
window. You can do this two ways.
■ Running to program end
■ Running to the cursor location

To ignore all breakpoints by running to program end:

From the Debug menu, choose Continue to End.

Ignores breakpoints and runs the program to termination.

To ignore all breakpoints by running to the cursor location:

From the Debug menu, choose Continue to cursor.

Ignores breakpoints until execution hits the current line at which point
execution pauses.

Viewing the source for a breakpoint

In Visual Cafe, you can select any of the breakpoints listed in the
Breakpoints window and view the source code associated with that
breakpoint.
8-21

Chapter 8: Debugging Java Programs
To view the source for a breakpoint:

1 From the Window menu, choose Breakpoints to open the Breakpoints
window.

2 Click on the breakpoint for which you want to see the source code.

3 From the Breakpoint menu, choose Go to Source.

The focus in the Source window will be set to the specified breakpoint.

Stepping through code when the program is paused

After your program has hit a breakpoint, you can step through your lines of
code one at a time using three techniques.

Step Into

When you step into your code, the Debugger executes one line of code
including any jumps to other methods until it reaches the next line of code.
This method allows you to step through the program, executing every
statement completely. If the program is running and you are paused in the
program, this command steps to the next source code statement. If the
current line is a method call, Step In steps inside the method. If the method
is an another source file, that file is opened to the next line of source code.

When you step into a method call, the Debugger jumps to the code for that
method, and steps through it as well. If the code for the method is in a
different file, the Debugger opens that file, and jumps right to the code for
the method.

Stepping into every line of code, for every method called by your program
is not usually the best way to debug a program. For example, let’s say your
program calls the println method. We know the println method works,
because it is part of the Java language. Stepping into method calls like
println throughout a program can quickly result in a chaos of open
windows. A more useful approach to debugging, is to step into some parts
of the code and to step over other parts. You can avoid stepping through
known working code by stepping over method calls. However, if you
stepped in where you should have stepped over, you could step out.

Step Over

If the current statement is a method call, the program executes to the next
statement following the call. Step Over executes the program to the next
8-22

Using the Variables window
statement (unless a breakpoint or an exception is encountered before
execution reaches that point). This function is handy when you are sure
that a method is not causing problems.

Step Out

This command executes to the current method’s return address, unless a
breakpoint or an exception is encountered before execution reaches that
point.

Using the Variables window
The Variables window shows the variables that are active in the current
context. A context is the particular portion of your program on which
Visual Cafe is focusing. This window is useful for examining errors that
occur when your program passes parameters to methods. You can modify
these variables directly in this window. When you pause the execution of
your program, you can modify the value of a variable and then continue
execution with the new value in place.

Your program’s variables are displayed in the Variables window which
displays local variables, global variables, and objects that are local to the
current method. You can examine objects and array data elements as well
as simple data types and expressions.

You can examine any of the variables in your program while in debug
mode.You can modify the value of a variable from either the Variables
window or the Watch window.

Viewing the value of a variable

You can view a variable by selecting its name from the Variables window.

To view the value of a variable:

1 From the Window menu, choose Variables.

The Variables window opens, displaying all the variables in the current
context of the program.

2 Click on the variable you want to view.

3 To expand an object to see its contents, click the plus sign to the left of
the object you want to expand.
8-23

Chapter 8: Debugging Java Programs
Viewing type information for a variable

You can view a variable’s type from the Variables window.

To view type information for a variable:

1 From the Variables menu, choose Watch.

The Variables window opens, displaying all the variables in the current
context of the program.

2 Click on the variable whose type you want to view.

The variable’s type is shown in the Type column.

Modifying a variable in the Variables window

You can modify a variable by selecting its name from the Variable window
and typing a value into the value column. You can modify a variable in the
Variables window only when your program is paused in the debugger.

To modify a variable in the Variables window:

1 From the Window menu, choose Variables > Watch.

The Variables window opens, displaying all the variables in the current
context of the program.

2 Click on the variable you want to change.

3 Click in the Value column.

4 Type the new value in the Value box.

5 Press ENTER to save the change.

To modify the value of an array or any structured type, edit the individual
array’s fields or elements. You cannot edit an entire array or structure at
once.

Using expressions in the Watch window
In Visual Cafe, you can specify variables and expressions that you want to
watch at breaks while debugging and executing your program. The
variables that you elect to watch are displayed in the Watch window,
which is only available when you pause a running program.
8-24

Using expressions in the Watch window
Caution: Since the program is paused, do not enter a watch expressions
that rely on calls to other components.

Adding a variable to the Watch window

You can watch a variable or expression while debugging by adding the
variable name to the Watch window. There are two ways to do this:
directly from the Watch window, or from the Variables window.

To add a variable from the Watch window:

1 From the Window menu, choose Watch to display the Watch window.

All the variables and expressions you have chosen to watch are
displayed in the Watch window.

Start typing a variable name or an expression directly into the Watch
field of the Watch window. As you begin to type, the window changes
to edit mode for the column of the selected row.

2 Press ENTER to save or ESCAPE to leave the item unchanged.

To add a variable from the Variables window:

1 Right-click on the variable you want to watch.

2 Choose Watch, then Variable from the context menu.

The Watch window evaluates and immediately displays the value of
the variable or expression. You can also modify the value of a variable
using the Watch window.

Modifying a variable or expression in the Watch window

You can change the variable name or expression you elected to watch at
run time directly from the Watch window. The Watch window can also be
used for modifying variables in place while your program is in debug
mode.

To locate the variable you want to modify:

1 From the Window menu, choose Watch.

2 Click on the variable or expression you want to change.

All the variables and expressions you have chosen to watch are
displayed in the Watch window.
8-25

Chapter 8: Debugging Java Programs
To change the value of a variable:

1 Click in the Value field.

2 Type the new value in the Value box.

To change the variable or expression to watch:

1 Click in the Watch field.

2 Edit the variable or expression.

3 Press ENTER to save the change.

To modify the value of an array or any structured type, edit the individual
array’s fields or elements. You cannot edit an entire array or structure at
once.

Caution: Since the program is paused, do not enter a watch expressions
that rely on calls to other components.

Deleting a variable or expression from the Watch window

When you’ve finished watching a run-time variable or expression, you can
delete it directly from the Watch window.

To delete a variable or expression:

1 From the Window menu, choose Watch.

All the variables and expressions you have chosen to watch are
displayed in the Watch window.

2 Click on the variable or expression you want to delete from the list.

3 Press DELETE.

The selected entry is deleted from the Watch window. You can also
delete multiple entries.

Using the Call Stack window
The Call Stack window displays all active calls. A call is a reference made
from one class to methods in another class. The Call Stack window shows
all the method calls that have started, but not have completed execution.
8-26

Using the Call Stack window
The call chain is the sequence of functions that were called to get to the
current function. You can access the functions in the call chain through the
Call Stack window.

When debugging in Visual Cafe, you can view the stack of methods in your
application that have started but not completed. These pending methods
are displayed in the Call Stack window. The currently executing method
appears at the top of the stack and older function calls below that. You can
also see the parameter types and values for each method on the call stack.

The active method is indicated by a black arrow next to it.

Viewing parameters for a method on the Call Stack window

You can view the parameters passed to a method on the call stack when
that method was called. Visual Cafe allows the display of both values and
types for each parameter passed.

To open the Call Stack window:

From the Window menu, choose Call Stack.

To view parameter types:

From the Calls menu, choose View Parameter Types.

This action toggles the display of parameter types in the Procedure
column of the Call Stack window.

To view parameter values:

1 From the Calls menu, choose View Parameter Values.

This action toggles the display of parameter values in the Procedure
column of the Call Stack window.

2 Enter the number of items in the array and the base index of the array.

3 Click OK.

Viewing variables for a method on the call stack

You can view the values of variables for any method on the call stack.
Only the variables in scope at the time the method entered the stack can
be viewed.
8-27

Chapter 8: Debugging Java Programs
To view the variables on the call stack:

1 From the Window menu, choose Call Stack to open the Call Stack
window.

2 Click on the Method whose variables you want to view.

3 From the Calls menu, choose Go to Variables.

The Variables window lists the variables in the selected call.

Viewing source for a method on the call stack

Visual Cafe allows you to choose any method entered on the call stack and
view the source code for that method.

To view the source for a method on the call stack:

1 From the Window menu, choose Call Stack to open the Call Stack
window.

2 Click on the Method whose code you want to view.

3 From the Calls menu, choose Go to Source.

The Source window for the selected call opens.

Ending a debugging session
You can end a debugging session at any time.

To end a debugging session:

Do either of the following:
■ Quit the application by closing the project or Visual Cafe.
■ Choose Stop from the Debugger’s Debug menu.

Debugging threads
Java is a multithreaded language, which means that Java allows for more
than one sequence of execution at a time. You might want to use threads
to allow your Java program to talk to more than one client across
networks.

A thread is a process in a program that has a beginning and an end. In
applications, the main method is responsible for indicating the beginning
8-28

Debugging threads
and end of the program. In applets, the Web browser uses various methods
to control the program flow.

However, programs are not limited to performing a single process. Java
programs can use threads to perform multiple processes simultaneously.
This is called multithreading. For example, suppose you are using a text
editor to type a letter and you want to save your changes before you
continue. If the text editor program is single-threaded, when you save the
file, the rest of the program must wait until the file is completely written to
the hard disk.

In a multithreaded application, the process that saves the file can be an
independent thread with its own beginning and end. When you save the
file, the file-saving thread starts and runs in parallel with the application’s
other processes. You can continue to type your letter as a copy of the file is
written to disk in the background. Multithreaded programs run faster and
are more convenient than single threaded applications.

Visual Cafe uses the Threads window to help you keep track of all the
threads that you put into your program. The threads window lists all the
known threads at any breakpoint. You must pause the program in order to
use the Threads window. You can also use the Threads window to control
the focus of the Variables window so that the Variables window displays
only variables that are associated with a particular thread and discard
others.

When debugging a multithreaded program in Visual Cafe, you can work
with a single thread in exclusion of others. All the extant threads your
program has created display in the Threads window, along with the state
of each thread.

You can switch between threads to debug or view the source for a selected
thread from the Threads window. You can also update the Call Stack
window with a single thread’s call chain and update the Variables window
to show only the variables within the current thread.

Using the Threads window

The Threads window presents at a glance all the currently existent threads
that your program has created, together with their states. The Threads
window provides no benefits when debugging a single-thread application.
It is only when debugging a multi-threaded application that the Threads
window provides indispensable services. This window lets you:
■ easily switch between threads to debug
8-29

Chapter 8: Debugging Java Programs
■ update the Source window with a thread’s current location
■ update the Call Stack window with a thread’s call chair

The current are listed one per row. The currently selected thread is
highlighted. You can change the selection by clicking on a different row, or
by using the arrow keys. The primary thread is identified by a bold arrow
in the left margin. This thread receives user input and is automatically
created by the operating system when a process (an instance of an
application) is created. The active thread—the one from which the
debugger regained control—is identified by a normal arrow in the left
margin. The columns of the Threads window have the following
significance:

The Threads view allows the user to see a list of threads running, and
suspend and resume threads. Comprised of two columns, the threads view

Column Meaning

ID Thread ID number. Thread IDs are unique
within a process.

Status Status. The Thread Status is the state of the
thread inside the Virtual Machine. If you
suspend a thread and the status reads “at
breakpoint”, the thread is at a breakpoint in
the VM.

Possible values of this field are:

Frz – the thread is “frozen” (suspended)

Thw – the thread is “thawed” (resumed or
not suspended)

Suspended -- the thread is suspended and
waiting to be resumed.

At Breakpoint -- the thread is waiting to be
executed.

Running -- the current thread running in the
Virtual Machine.

Condition Waiting -- the thread has been
locked by another thread.

Zombie -- a thread has been created and is
waiting to be run for the first time.
8-30

Debugging threads
lists the threads and addresses of all spawned threads. The current thread
is shown by selection. Double-clicking on a thread sets the context to that
thread. The stack crawl window shows that thread.

Debugging a single thread

If you want to focus your debugging efforts on a specific thread to
eliminate the behavior of others, you can set the focus to that thread and
work on it alone.

To debug a single thread:

1 From the Window menu, choose Threads to open the Threads
window.

2 Click the thread you want to work on.

3 From the Threads menu, choose Set Focus.

The focus of the Debugger is set to the selected thread.

4 Continue debugging that thread in the Call Stack window, Variables
window, or Source windows.

Suspending a thread

If you’re working on a multithreaded program, you can suspend any
specific thread if you suspect it of causing unwanted side effects while
your program is running or while you are debugging.

To suspend a thread:

1 From the Window menu, choose Threads to open the Threads
window.

2 Click the thread you want to suspend.

3 Choose the Thread, then Suspend.

The selected thread is suspended.

Resuming a suspended thread

If you’ve suspended any threads to temporarily eliminate their behavior
from your program, you can resume any one you choose from the list
displayed in the Threads window.
8-31

Chapter 8: Debugging Java Programs
To resume a suspended thread:

1 From the Window menu, choose Threads to open the Threads
window.

2 Click the thread you want to resume.

3 From the Threads menu, choose Resume.

The selected thread is resumed.

Suspending other threads

If you want to focus your debugging attention on a single thread, Visual
Cafe allows you to suspend other threads to narrow down the behavior of
your program.

To suspend other threads:

1 From the Window menu, choose Threads to open the Threads
window.

2 Click the thread you want to want to work on.

Caution: You’re choosing all threads other than this one to be suspended.

3 From the Threads menu, choose Suspend Others.

All other threads in the Debugger except the one that is selected are
suspended.

Resuming other suspended threads

If you’ve chosen to suspend any threads in a multithreaded program, you
can resume all other threads at any time.

To resume other suspended threads:

1 From the Window menu, choose Thread to open the Threads window.

2 Click the thread you do not want to resume.

Caution: You’re allowing threads other than this one to resume.

3 From the Threads menu, choose Resume Others.

All other threads in the Debugger except the one that is selected are
resumed.
8-32

Debugging threads
Viewing the source code for a selected thread

If you want to look at the source code for a specific thread, you can do so
from the Threads window.

To view the source code for a selected thread:

1 From the Window menu, choose Thread to open the Threads window.

2 Click the thread you want to focus on.

3 From the Threads menu, choose Set Focus.

Set Focus updates the Source window.

4 Display the Source window.

The thread’s source code is visible in the Source window.

Viewing the active variables in a thread

You can view the values of variables for any thread currently executing.

To view the active variables in a thread:

1 From the Window menu, choose Threads to open the Threads
window.

2 Click the thread you want to focus on.

3 From the Threads menu, choose Set Focus.

Set Focus updates the Variables window.

4 From the Window menu, choose Variables.

The Variables window opens displaying the chosen thread’s variables.

Viewing the call stack for a thread

If you’re working on a specific thread and want to see the call stack for
that thread alone, Visual Cafe allows you to do so.

To view the call stack for a thread:

1 From the Window menu, choose Threads to open the Threads
window.

2 Click the thread whose call stack you want to view.

3 From the Threads menu, choose Set Focus.

Set Focus updates the Call Stack window.

4 From the Window menu, choose Call Stack.
8-33

Chapter 8: Debugging Java Programs
The Call Stack window opens on the thread you selected.

5 Click on the Method whose code you want to view.

Debugging remotely
One of the unique features of Visual Cafe is running a program on one
machine and debugging it remotely on another.

Setting up for remote debugging

Before beginning a remote debugging session, you must properly
configure the local and remote machines.

To configure the local and remote machines:

1 Visual Cafe or Visual Cafe Pro must be installed and running on both
machines.

2 The TCP/IP networking protocol must be installed on both computers
and running.

3 Identical copies of the project, including all source files to be
debugged, must be on both machines.

Starting remote applets or application debugging

You can debug an applet or application remotely on another machine. You
cannot debug native applications or DLLs remotely.

Note: The class files you are debugging reside on the remote computer
and not on the computer where you are running the debugger. So, to have
a good debug session, you need to be sure that the remote computer has
the debug build of the classes you need, and so on. Also, the remote
virtual machine needs to have the class path set in the environment before
running caferemote.exe . Make sure the class path is set correctly in
autoexec.bat for Windows 95 or in the Control Panel for Windows NT;
caferemote.exe can also read sc.ini .

To debug an applet or application remotely:

1 Open a console session (DOS window) on the remote machine by
moving to the directory containing the class and HTML files of the
program you intend to debug and executing caferemote .
8-34

Using Debugger-specific menus
Caferemote displays some version information, and then an agent
password and the machine’s IP address.

2 On the machine that is running the Debugger, load the project
corresponding to the class and HTML files you are debugging on the
remote host machine.

3 From the Project menu, choose Options.

4 If you are remotely debugging an applet, from the Project tab, specify
an HTML file, including the full path.

5 From the Debugger tab, choose General from the Category list.

6 Check Enable Remote Debugging and enter the Host Address and
Agent Password as reported by caferemote.

7 Click OK.

Remote debugging is now enabled.

Ending remote applets or application debugging

On the remote machine, select the Caferemote console window and press
“CONTROL-C”. This terminates the debug session currently in process.

To continue, you need to re-execute caferemote in order to get a new
agent password.

Using Debugger-specific menus
This section describes the menus and their functionality while using the
debugger.

Overview of the Project menu

The following commands are available from the Visual Cafe Project menu.

Field Description

Host Address The IP address of the remote host machine.

Agent Password The remote machine’s password, which is
returned by caferemote.exe run on the
remote computer.
8-35

Chapter 8: Debugging Java Programs
The Execute command compiles and runs the current project with no
debugging. Applets are run in the Symantec Applet viewer by default. You
set the default viewer in the Project tab of the Project Options dialog box.

The Run in Debugger command runs the program in debug mode and
stops at the first breakpoint.

The Step Into command begins running the program by stepping into the
first line of source code. When used on an applet, this command takes you
the applet void init() method if one is implemented.

The Build Applet or Build Application command builds the applet or
application.

The Compile Item command compiles the active source file.

The Parse All command parses all files in the project.

The Add Item command adds the active file in the Source window to the
project.

The Create Project Template command displays the Create Template
dialog box so you can add a template to the Component Library. Once
added, the template is available for the New Project command.

The Switch Project command lets you select an open project as the new
active main project. The main project is the one that the Project menu
commands apply to.

The Options command displays the Project Options dialog box where you
can define debugger, compiler, project, and directory options.

Overview of the Debug menu

The Debug menu replaces the Project menu when you start debugging. To
display the Debug menu, choose Run in Debugger from the Project menu.

The following commands are available from the Visual Cafe Debug menu.

The Continue command runs a paused program.

The Pause command temporarily stops the execution of a program while it
is running and switches to debug mode. To begin the program again at the
current location, choose Continue.
8-36

Using Debugger-specific menus
When an un-handled exception is encountered, Visual Cafe pauses
automatically at the line where the error occurred.

The Stop command terminates the program execution.

The Restart command restarts the program. Debugging is restarted from
the first line.

The Step Into command steps into the next line of source code. This
command steps to the next source code statement even if it is contained
within a method.

The Step Over command steps over the current method and stops when
the method returns. Executes the program to the next statement, unless a
breakpoint or exception is encountered before the next statement. If the
current statement contains a method call, the entire method is called before
control is returned.

The Step Out command executes the current method until it returns to its
caller, unless a breakpoint or exception is encountered before execution
reaches that point.

The Continue to Cursor command continues running a paused program
while ignoring any breakpoints prior to the cursor location, then stops at
the cursor location. When the cursor is reached, the program pauses and
the debugger is invoked. If the selected line does not get executed before
the end of the program, the program does not break.

The Continue to End command continues running a paused program,
ignoring all breakpoints, from the pause point until the normal termination
point. If any type of exception occurs, the program breaks at the point
where the exception is called.

The Options command displays the Project Options dialog box, where
you can set debugging options under the Debugger tab.

Overview of the Insert menu

The following options are available from the Visual Cafe Insert menu. This
menu allows you to create new project objects and add forms, files, and
objects to the project.

The Form command displays the Insert Form dialog box so that you can
insert a form from the Component Library into the current project.
8-37

Chapter 8: Debugging Java Programs
The Applet command inserts an applet if there are no saved applet
objects, or opens the Insert Applet dialog where you can select an applet
from a list of applet templates.

The Component command displays the Insert Component dialog box so
you can add one or more objects from the Component Library to the active
form or to the project.

The Class command opens the Insert Class Wizard, where you can add
and define a new class or interface for the current project.

The Member command displays the Insert Member dialog box, where you
can declare a method to be added to the current class.

The Group command adds a group to the current project or group.
Groups can only be inserted at the root level of the Component Library
window or inside other groups.

The Files into Project command (Insert/Remove Files) displays a dialog
box where you can select one or more files to be added to the project. You
can also remove files from the project with this dialog box.

The Component into Library command displays a dialog box where you
can add an external component to the Component Library.

Overview of the Breakpoints menu

The Breakpoints menu is available when your applet or application is
running. To display the Breakpoints window and this menu, choose
Breakpoints from the Window menu.

The following commands are available from the Visual Cafe Breakpoints
menu, or from the Breakpoint window’s pop-up menu.

The Clear or Clear All command clears the selected breakpoint or all
breakpoints.

The Enable or Enable All command enables the selected breakpoints or
all breakpoints.

The Disable or Disable All command disables the selected breakpoints or
all breakpoints.

The Go to Source command opens the Source window with focus on the
line of code where the breakpoint is set.
8-38

Using Debugger-specific menus
Overview of the Variables menu

To display the Variables window and this menu, choose Variables from the
Window menu.

The Evaluate Expression command lets you evaluate variables and
expressions from a dialog, modify their values, and add an entry to the
Watch window.

Overview of the Threads menu

To display the Threads window and this menu, choose Threads from the
Window menu.

The following commands are available from the Visual Cafe Threads menu.

The Suspend command suspends the execution of the selected thread.

The Resume command resumes execution of the selected thread from the
previous suspend point.

The Suspend Others command suspends all other threads in the
debugger except for the selected thread.

The Resume Others command resumes all other threads in the debugger
except for the currently selected thread.

The Set Focus command sets the focus of the debugger to the selected
thread. The Call Stack, Variables, and Source windows are updated.

Overview of the Calls menu

To display the Call Stack window and the Calls menu, choose Calls from
the Window menu.

The following commands are available from the Visual Cafe Calls menu.

The View Parameter Values command toggles the display of parameter
values in the Method column of the Call Stack window.

The View Parameter Types command toggles the display of parameter
types in the Method column.

The Go to Source command opens the Source window for the selected
call.
8-39

Chapter 8: Debugging Java Programs
The Go to Variables command updates and displays the Variables window
with a list of variables in the selected method call.

The Set Focus command sets the focus of the debugger to the selected
method call. This option also updates the Variables to show the active
variables in the method and Source windows to show the method call so
that you can step in if you want.

Overview of the Source menu

The following options are enabled when the Source window is the current
window. These commands affect the debug setting or cursor placement in
the Source window.

To display the Source window and this menu, select a file in the Project
window, then choose Edit Source from the Object menu, or right-click and
choose Edit Source.

The following commands are available from the Visual Cafe Source menu.

The Evaluate Expression command lets you evaluate variables and
expressions from a dialog box, modify their values, and add an entry to the
Watch window.

The Set Breakpoint command sets or clears a breakpoint on the current
line. The toggling is based on whether or not a breakpoint is set for the
current line of source code.

If no breakpoint is set, a breakpoint is set on the current line and a stop
icon appears in the left margin next to the current line. If there is a
breakpoint on the current line, the breakpoint is removed.

The Set Conditional Breakpoint command displays the Conditional
Breakpoint dialog box, where you can set a breakpoint that occurs if a
particular expression evaluates to true.

The Indent or Unindent command indents or unindents the selected text
block.

The Uppercase or Lowercase command converts the selected text to
upper or lower case.

The Tabs to Spaces command changes all tab characters in the selected
text to spaces. The number of spaces used to replace each tab character
8-40

Using Debugger-specific menus
depends on the current edit buffer’s Tab Width value in the Format
Options dialog box.

The Spaces to Tabs command changes spaces in the selected text to tab
characters. The number of spaces used to create each tab character
depends on the current edit buffer’s Tab Width value in the Format
Options dialog box.

The Format Options command displays the Format Options dialog box,
where you can set editing options for the current edit buffers.

Overview of the Window menu

The following options are available from the Visual Cafe Window menu:

The New Window command creates a new instance of the active source
window. Each new instance of the same window is incremented to
indicate the number of open windows.

The Workspaces command includes the following commands on its
submenu that let you work with your current workspace:
8-41

Chapter 8: Debugging Java Programs
■ The <workspace name> command lets you save your current
workspace and configure your environment to the new layout.

■ The New command lets you create a new workspace.
■ The Rename command lets you rename a workspace.
■ The Delete command lets you delete a workspace.

You can activate the display of these tools using their corresponding
commands:
■ Property List
■ Component Library
■ Class Browser
■ Hierarchy Editor

You can activate the display of these debugging windows using their
corresponding commands:
■ Breakpoints
■ Variables
■ Watch
■ Threads
■ Call Stack
■ Messages

The Recently Used Windows command displays one of the windows that
you used recently, you can select the window name from the numbered
list on the menu.

The Windows command displays a list of recently used windows.
8-42

C H A P T E R 9
Fine-Tuning Visual Cafe

This chapter describes various ways to enhance and troubleshoot your
development experience with Visual Cafe. The first section describes the
ways you can configure the Visual Cafe environment to your development
preferences. Also included is a section on how to use the Symantec
LiveUpdate feature to upgrade your existing version of Visual Cafe.

The second section discusses common problems in programming in the
Java language and with Visual Cafe in general.

Setting environment options
Visual Cafe allows you to set options that are global to all of your projects.

Note: To customize a single project, use the Project Options dialog box.

Setting environment options in the General tab

From the General tab of the Environment Options dialog box, you can
specifying the following environment options:
■ Defining the Visual Cafe startup mode
■ Finding Java source files
■ Defining the Help File Set
9-1

Chapter 9: Fine-Tuning Visual Cafe
To open the Environment Options General view, choose Choose Tools,
Environment Options, then General tab.

Defining the Visual Cafe startup mode

The startup mode defines what processing you want done when you start a
new Visual Cafe session.

To establish the startup mode:

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the On Startup area, select the appropriate option.

Select… To specify this…

Create a new project Open a new project each time Visual Cafe
starts.

Open the last project Open the project that was active the last time
Visual Cafe exited; if there is none, a new
project is created. (This is the default.)

Do nothing Specify that no project opens and that you will
select an appropriate action after Visual Cafe
starts.
9-2

Setting environment options
Finding Java source files

You can specify the path to locate source files if they are not in the project.
This setting is for the entire Visual Cafe environment.

To specify the project path:

Note: You can set the source search path for a project from the Project
Options dialog box, and for the entire environment with the javainc
statement in the \VisualCafe\Bin\sc.ini file.

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the Look for source files in path field, type the path to locate source
files if they are not in the project.

Defining the Help file set

The Help file set is a group of WinHelp hlp and cnt files that Visual Cafe
uses at runtime.

To define the Help file set:

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the Help Files field, enter the hlp file names.

Note: These directories are automatically searched by Visual Cafe: the
installation directory, and the release \bin and \help directories.

Setting debugging options for the environment

There are several Visual Cafe debugger options that apply to the entire
environment.

To set environment options for debugging, from the Tools menu, choose
Environment Options, then click the Debugging tab. The panel offers the
9-3

Chapter 9: Fine-Tuning Visual Cafe
Run-Time Editing option group, the Tips group, and the Switch to Debug
workspace on Run option.

The Run-Time Editing option group

Visual Cafe Professional Development Edition offers incremental
debugging (also called run-time editing). While your program is running in
the Visual Cafe debugger, you can edit your Java program and immediately
see the effects of the code change.

Three options are available:
■ Always compile changes and update program, no prompt — Enables

run-time editing so that choosing a Save menu item causes new
changes to be compiled and reflected in an executing program. If the
program is paused, resuming it causes all changes to be applied and
saved. (This is the default.)

■ Prompt before compiling changes and updating program — Enables
run-time editing the same as the first option, except that you are
prompted first, so you can choose to stop run-time editing.

■ Always ignore changes — Disables the run-time editing feature. (Visual
Cafe version 1.0 worked this way.)
9-4

Setting environment options
The Tips option group

To enable or disable ValueTips at debug time:

1 Select or clear the Enable ValueTips option.

2 If selected, set the delay time before a tip displays.

The Switch to Debug workspace on Run option

Select this option to cause Visual Cafe to go to the workspace named
“Debug” when you run in the debugger (from the Project menu, choose
Run in Debugger).

Deselect this option if you want to remain in the current workspace. The
default is selected.

Specifying text formatting for Visual Cafe windows

You can define a format style for different file types displayed in the Visual
Cafe windows. The initial file types that are available are Java and HTML.

To open the Environment Options Format view, from the Tools menu,
choose Environment Options, then click the Format tab.
9-5

Chapter 9: Fine-Tuning Visual Cafe
To set format options for files with a certain extension:

1 Choose the file extension you want to customize.
■ To create a new file extension entry, click New and enter the

extension in the dialog box.
■ To remove an extension from the list, choose it then click Delete.

<UNTITLED> is the same type you get after choosing New File from
the File menu.

<UNKNOWN> is a file extension that does not have specific format
options set for it. This is the type of file that you get when you save a
file as an “unknown” type.

2 Set the options you want to apply to files with this extension. To
highlight language keywords, choose the language from the Language
keywords drop-down list.

Option Description

Word wrap Enables word wrap. While typing, lines that extend
beyond the right margin are automatically broken at
the last word boundary before the margin.

Check delimiters If you type a right parenthesis, square bracket, or
brace, the editor briefly highlights the corresponding
left delimiter. If no matching delimiter is found, an
error message is displayed in the status bar.

Indent after brace If the last character typed on a line is a left brace, the
next line is automatically indented by an extra tab
stop. This option only works if Indent Automatically
is selected in the buffer.

Indent automatically Automatically indent on newline. When you press
ENTER, the editor positions the cursor directly below
the first character in the previous line.

Change tabs to spaces Tabs are inserted into the text as an appropriate
number of spaces, rather than as tab characters.

Remove trailing
spaces

Trailing spaces and tabs are removed from the end of
each line when a file is saved.
9-6

Setting environment options
To specify custom keywords:

Custom keywords are recognized in the Source window or pane. They are
highlighted in red by default. You can change the display attributes of
custom keywords in the Environment Options Display tab. There is one
custom keywords list that applies to all file types that have the Enable
custom keywords option.
■ Click Edit Custom.

The Custom Keywords dialog box opens so that you can enter the new
keywords.

Using the Enter New File Extension dialog box

From the Tools menu, choose Environment Options, then click the Format
tab, then click New.

Enter the file extension that you want to add to the format type list.

When the extension is available from the list, you can define a format style
for the file type. Two predefined file types are Java and HTML.

Enable custom
keywords

You can maintain a set of custom keywords that
highlight in a specified manner within the edit
window. There is one custom keywords list that
applies to all file types that have the Enable custom
keywords option. Click Edit Custom to specify custom
keywords. To set highlighting for custom keywords,
click the Display tab.

Indent comments at If selected, the editor automatically indents the
comment to a specified alignment column when you
type "//" or "/*" to start a comment. You can specify
the alignment column in the adjacent text box.

Tab width Specifies the number of columns between tab stops
(1-16).The default is four character widths. This value
may be overridden locally in each buffer.

Right margin Specifies the column that acts as the right margin for
word wrapping. (1-512). This value may be
overridden locally in each buffer.

Option Description
9-7

Chapter 9: Fine-Tuning Visual Cafe
Using the Custom Keywords dialog box

From the Tools menu, choose Environment Options, then click the Format
tab, then click Edit Custom.
■ Use the Custom Keywords dialog box to add keywords to the list of

words recognized in the Source window and pane.
■ To add a new keyword, type the keyword into the text box and click

Add.
■ To remove a keyword from the list, click the keyword in the list and

click Remove.

Mapping Visual Cafe commands to key sequences

Visual Cafe lets you define a custom keystroke sequence for many Visual
Cafe editing operations and macros. Macros are stored in the command list
as macrofilename.

Note: Help on the commands is available in the Macro help. This help is
available when you are editing macros. For example, from the Tools menu,
choose Macro, then ScriptMaker, then click Edit; in the window that
displays, press F1 to get the Macro help contents.

In the Keyboard view of the Environment Options, you can also specify
editing options for the Source Editor.
9-8

Setting environment options
To access the Environment Options Keyboard view:

From the Tools menu, choose Environment Options, then click the
Keyboard tab.

To choose a key file to use in the Visual Cafe environment:

Choose a file in the File field.

To delete a key file:

Choose a file in the File field, then click Delete.

To map a command to a key sequence:

1 Choose a key file.

2 From the command list, select a command.

If an item has more than one key assignment, the item appears
multiple times in the list.

Tip: Click the column header to sort the list by command or key
assignment, and by forward or reverse alphabetical order.

3 To specify a key assignment, click in the New Key Assignment field
and specify the key sequence as follows:
■ Press the key sequence.
■ Click a button in the Insert Key area.

If the value that you enter is already mapped to a command or
macro, that command name appears in the Assigned To area.

Tip: A command can have multiple key assignments. If the
command already has a key assignment and you specify another
assignment, the command now has two separate assignments.

4 Assign the key sequence to the command by clicking Assign.

The assignments are automatically saved in an untitled file.

5 To save the settings to a file, click Save.

In the dialog box, specify the name of a new or existing key file.
Saving to a file allows you to reload or distribute the key assignments.

To delete the key assignment for a command:
■ Select the command in the Command list and click Unassign.
9-9

Chapter 9: Fine-Tuning Visual Cafe
To copy the command assignment list as text:
■ Right-click in the Command list and select Copy All.

You can paste the list into another window, such as the Source window.

To modify what commands are shown:
■ Right-click in the Command list and choose Unbound commands, All,

Member, Text, or Class.

Unbound commands toggles the display of commands without key
assignments.

Member, Text, and Class toggle display of commands that start with
these words.

To specify key editing options for the Source window and pane:

Click More and select options in the dialog box.

Specifying key editing options for the Source Editor

These option settings apply to all Source windows and panes.

To specify editing options:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Click More.
9-10

Setting environment options
3 Select the options you want:

Using the Save Key Bindings dialog box

Use the Save Key Binding dialog box to save a key file.
■ From the Tools menu, choose Environment Options, then click the

Keyboard tab, then click Save.

Customizing the display font and color in Visual Cafe windows

Visual Cafe allows you to set the font, style, and colors for development
environment windows, Visual Cafe editors, and window items. You can

Option Description

Virtual cursor When checked, you can position the cursor anywhere
in the file, regardless of the placement of the line
endings. When unchecked, you cannot position the
cursor past the end of a line. This box is unchecked
by default.

Brief menu
accelerators

Disables menu keys. After this is selected, any new
windows will not have any underscores beneath the
top-level menu items.

Brief-compatible
selection

If you choose this option, the editor stays in selection
mode when you use the arrow keys.

Typing replaces
selection

When checked, the source editor follows the
Windows standard convention of replacing any
selected text with the first character typed or pasted.
When unchecked, typing or pasting inserts the text to
the left of the current selection. This box is checked
by default.

Normal selection for
debugging

Enables normal selection of text when in debugging
mode. If cleared, you can drag from the source
window to the Variables, Watch, and Thread windows
while debugging.

Cut and copy line
without selection

When checked, you can quickly cut or copy the
current line using the standard cut or copy keystrokes
(without having to first select the line). When
unchecked, you can cut or copy a line by using the
keys assigned to the EditorCutLine or EditorCopyLine
functions. This box is unchecked by default.
9-11

Chapter 9: Fine-Tuning Visual Cafe
also change the appearance of elements in your source code; for example,
comments, keywords, current line, and breakpoints.

Note: When you select All Windows, the Color and Style list displays a set
of common components. Common component changes apply to all objects
that contain the component.

There is only one Text entry; changing the color and style for it changes
the text color for all windows.

To access the Environment Options Display view:
■ From the Tools menu, choose Environment Options, then click the

Display tab.

To set the font or font size:

1 In the Category list box, select the item whose appearance you want to
modify.

2 Choose a value for font or font size.

To set the color and style:

1 In the Category list box, select the item whose appearance you want to
modify.
9-12

Setting environment options
2 Select an item in the Color & Styles list box, then choose a value for
Foreground or Background, or select Bold or Italic.

The default setting is the default text color as set in the Windows
control panel.

Here are explanations of items in the Color & Style list:

Specifying backup and save options

Visual Cafe provides several backup and save options:
■ Saving files for recovery purposes
■ Automating source file backups
■ Setting the Scope of the Undo Command

Saving files for recovery purposes

You can automate the saving of files in temporary locations so you can
recover changes if there is a system failure.

To establish file saving:

1 From the Tools menu, choose Environment Options, then click the
Backup tab.

2 Select Save Automatically and choose a time interval.

Item Description

Text Text other than the type defined below.

Selected text The text and background of selected text.

Errors Lines where compiler errors are found.

Comments Java comments.

Keywords Java keywords.

Current Line The line that contains the insert point.

Preprocessor Java preprocessor directives.

Custom keywords Special keywords that you define.

Execution Line During debugging, the current execution line.
9-13

Chapter 9: Fine-Tuning Visual Cafe
When selected, each modified edit buffer is saved at regular intervals
in a temporary file in the temp home directory. Under normal
circumstances, these temporary files are automatically deleted when
the editor exits. If a system crash or power failure occurs, the editor
will not exit normally and these temporary files are not deleted. This
permits you to recover work that would otherwise be lost. The
temporary files created by the autosave function have name that begin
with the character ~, followed by a unique number and the extension
.sav ; for example, ~4289352.sav .

For identification purposes, the autosave function adds a line in the
following format at the beginning of each temporary file:

; Visual Cafe AUTOSAVE C:\DIR\FILENAME.EXT 08-12-95
7:35 pm

This line contains the complete path name of the corresponding file
and the date and time of the autosave, formatted as a Java language
comment. The rest of the temporary file, starting with line 2, stores the
contents of the buffer at the time the autosave was performed.

To recover from a system crash or power failure, examine each file
with the extension .sav in the temp directory.

Automating source file backups

You can control whether files in a project are automatically backed up each
time that a save is performed. You can also specify the location and name
of the backup files.

Note: Only Java and HTML files that have changed are backed up. For
example, if you save all files in a project, only the files that have changed
are backed up.

To automate project backups:

1 From the Tools menu, choose Environment Options, then click the
Backup tab.

2 Select Backup files on Save.

3 Select the location and name of the backup files:

Select… To specify this…

Create BAK file Create one or more backup files that are named
file.bak.
9-14

Setting environment options
Setting the scope of the Undo command

The Undo command is available from the Edit menu and has standard
Windows functionality. The default number of undoable actions is 100.

To set the scope of the Undo command:

1 From the Tools menu, choose Environment Options, then click the
Backup tab.

2 In the Save actions for undo field, enter the number of previous
actions that you want Visual Cafe to store for each window.

Specifying code editing options

The Editing environment options of Visual Cafe allow you to change
standard editing functionality for Source windows, the Class Browser, and
the Hierarchy Editor.

In a Source window or pane, you can toggle between Insert mode and
Overwrite mode by pressing the Insert key. In Overwrite mode, the new
characters overwrite the existing text. The Editing tab of the Environment

Copy to directory Copy the source files to the specified directory.
You can type the directory with the full path into
the text box, or click … to select a directory from a
dialog box. There is no default.

Invoke OnBackup script Run your own macro, created with the Visual Cafe
macro utility and containing an OnBackupFile
statement. All macros are placed in the
\VisualCafe\Bin\Macs directory.

Select… To specify this…
9-15

Chapter 9: Fine-Tuning Visual Cafe
Options enables you to specify the appearance of the Insert and Overwrite
modes.

To access the Environment Options Editing view:

From the Tools menu, choose Environment Options, then click the
Editing tab.

Controlling the cursor style

The Insert and Overwrite groups offer you options that govern the cursor
style of the respective modes.

Option Description

Block Covers the current character.

Underline Underlines the current character.

Vertical bar The standard insertion point cursor, displays between
characters.

Blink When selected, the cursor blinks. You can set the blink rate in
the Windows control panel.
9-16

Setting environment options
Setting the cursor style

To set the cursor style for the insert and overwrite cursor:

1 From the Tools menu, choose Environment Options, then click the
Editing tab.

2 In the Insert or Overwrite definition area, select or clear the Blinking
option.

3 Select the cursor style: Block, Underline, or Vertical Bar.

To show horizontal scroll bars:

Select this option to display a horizontal scroll bar at the bottom of
Source windows and panes (it is selected by default.)

Controlling toolbar position and visibility

Visual Cafe toolbars are at the top of the Visual Cafe main window. You
can control toolbar position and visibility.

To float a toolbar:

1 Drag the toolbar from the top of the Visual Cafe window onto your
desktop.

2 Double-click somewhere in the toolbar background.

To dock a toolbar:

1 Drag the toolbar to the top of the Visual Cafe window.

2 Double-click somewhere in the toolbar background.

To hide or show a toolbar:

1 Right-click at the top of the Visual Cafe window and select the toolbar
name.

2 Click the close box on the toolbar.

Enabling ValueTips

ValueTips display the value of a variable in the Source window when you
place your cursor over the variable at debug time.

To enable ValueTips:

1 From the Tools menu, choose Environment Options.
9-17

Chapter 9: Fine-Tuning Visual Cafe
2 Click the Debugging tab.

3 Select or clear the Enable Value Tips option.

4 If selected, set the delay time before a tip displays.

Customizing Class Browser and Class Hierarchy window
editing

You can enable multiple component selection and select confirmation
options for both the Class Browser and the Class Hierarchy.

To customize Class Browser and Class Hierarchy window editing:

1 From the Tools menu, choose Environment Options, then click the
Editing tab.

2 In the Class Browser and Class Hierarchy area, select or clear
appropriate options:

Note: You can also enable a horizontal scroll bar in the Class Browser
source pane by selecting the Show Horizontal scroll bar option in the
Source window area.

Changing editor properties

You can change the behavior of the Visual Cafe editors to suit your
individual work needs.

Option Description

Confirm Delete member Display a confirmation message before deleting a
class member.

Confirm Inheritance
change

Display a confirmation message before applying
inheritance changes.

Multiple selection Display a confirmation message before applying a
change to multiple selected objects. Yes - allow
multiple select. No: disallow multiple selects.
Confirm: allow but confirm changes to multiple
select.
9-18

Updating Visual Cafe with LiveUpdate
To make local changes (local to an editing session):

From the Source menu, choose Format Options.

The following items can be customized:
■ Font Style and Size

Sets the appearance of text in Source windows.
■ Colors

Both foreground and background color for the selected window can
be customized. You can also preset the colors for certain text items.
The items for which you can change the color include: breakpoint text,
code window text, comment text, current statement text, custom
keyword text, error text, identifier text, keyword text, next statement
text, and selection text.

■ Tab to Space Conversion

Converts tab characters to spaces as you type. You can also preset the
number of spaces used for each tab character.

■ Automatic Source Formatting

Automatically formats code as it is entered, indenting lines of code and
adding closing braces and parentheses.

Updating Visual Cafe with LiveUpdate
LiveUpdate is a Symantec technology that allows its registered users to
upgrade selected products online. LiveUpdate keeps track of packages that
are downloaded to your computer so that it can determine the appropriate
upgrade for your software.

You can update your version of Visual Cafe by initiating the process
through Visual Cafe over a TCP/IP based network connection to the
Internet, such as your office workstation. You can also use LiveUpdate with
a TCP/IP-based connection with your online or Internet service provider.

LiveUpdate also works through a modem connection to a Bulletin Board
System (BBS) in case you do not have access to the Internet or your access
is restricted by firewalls.

After you connect to the LiveUpdate center, LiveUpdate presents you with
the most recent update to your version and edition of Visual Cafe. You
must run LiveUpdate again to install subsequent updates. For example, if
you have Visual Cafe 1.0d on your hard drive, and you want to upgrade to
9-19

Chapter 9: Fine-Tuning Visual Cafe
1.1, you must install Visual Cafe 1.0e and subsequent versions of Visual
Cafe before updating to the 1.1 version.

Using LiveUpdate over the Internet

If you already have a working connection to the Internet, you select the
Use Existing Internet Connection option. No further setup is required.

If you do not have a working connection to the Internet or you wish to
connect by modem instead, you should proceed to the Select a Modem
wizard panel and select your modem (and the communication port your
modem is using) from the available choices.

Using LiveUpdate with your modem

If you have a TCP/IP-based connection to the Internet through your
Internet service provider, you can still use LiveUpdate to update your copy
of Visual Cafe. Your dialup or ISDN account with your Internet service
provider must be TCP-IP based, such as PPP, SLIP, or CSLIP accounts. You
cannot use LiveUpdate through a Shell account.

You can also use LiveUpdate if you have an account with an online service
such as America Online (AOL) or Compuserve. You must have the
appropriate software installed and configured to use TCP/IP.

Configuring your modem

When LiveUpdate starts, the first wizard panel contains a button titled
Modem Setup. Pressing this button allows you to change your modem
settings at any time. If you choose not to setup your modem initially and
use your existing Internet connection, you will still be able to setup a
modem in the future.

Identifying your modem

If you have an external modem, examine it for a manufacturer and/or
model label. Sometimes this information is on the underside of the modem.
If you cannot identify your modem in this manner, or if you have an
internal modem, it is suggested you try selecting Standard Modem Types
from the list of manufacturers and then select the Standard modem model
that most closely matches your modem’s speed, if known. For example, if
you have a 14,400 baud (14.4) modem you might try selecting 14000 bps
Modem as the model.
9-20

Updating Visual Cafe with LiveUpdate
If you do not know the speed of your modem, it is suggested that you first
try 9600 bps Modem. If that does not work, try 2400 bps Modem. As a final
alternative, try selecting Hayes as the manufacturer and either Compatible
(default) or Compatible (alternate) for the model. If none of these
selections result in a successful connection to a LiveUpdate service, you
will need to consult your computer equipment vendor or company MIS/
Help Desk for assistance in determining your modem type.

If your modem manufacturer is listed but the particular model is not, you
should select Other from the model list. This choice will usually enable
your modem to properly connect, download, and disconnect.

If you find your modem manufacturer in the list but not your model, select
Standard Modem Types from the list of manufacturers and then select the
Standard modem model that most closely matches your modem’s speed.
For example, if you have a 14,400 baud (14.4) modem you might try
selecting 14000 bps Modem as the model.

Configuring your modem INIT string

If LiveUpdate has your modem manufacturer and model listed, but you’d
like to modify the INIT string to better suit your preferences, LiveUpdate
allows you to do this by pressing the Edit String button on the Select a
Modem wizard panel.

While it is suggested that only advanced users who know the implications
of changing their modem’s INIT strings actually attempt to do so,
LiveUpdate allows you to partially or completely change the supplied INIT
string. LiveUpdate does require E0 and V1to be present in the INIT string
for proper operation. Again, most users will never need to change the
supplied INIT strings, and this provision is provided for the few users who
need or want to modify the default string.

If you’ve made modifications to the default INIT string but now would like
to restore the original string for your particular modem, you can do this by
reselecting your modem manufacturer and model from the list.Your custom
INIT string will be replaced by the default string for the selected modem.

Selecting the COM port

In the Select a Modem wizard panel, you are asked to select the COM port
for your modem. If you aren’t sure which is the correct COM port, press
the Find My Modem button. The LiveUpdate setup wizard will attempt to
locate any modem(s) you have attached to any of the four basic COM
9-21

Chapter 9: Fine-Tuning Visual Cafe
ports. If LiveUpdate finds a modem, it places a red dot next to the
corresponding COM port.

If you have two (or more) modems on your system, LiveUpdate allows you
to choose the correct one if you know the COM port number of the
modem you want to use. To select the corresponding COM port, highlight
that COM port in the listbox. If you don’t know the COM port, press the
Find My Modem button and LiveUpdate will place red dots corresponding
to all found modems next to the appropriate COM port number or
numbers. Select the COM port from among the entries marked with a red
dot.

Selecting dialing parameters

In the Number to Dial wizard panel, there are a number of countries in a
listbox. You select the appropriate country depending on where you are
geographically at the time you run LiveUpdate. Users in the United States
and Canada choose the service in Eugene, Oregon. Users in New Zealand,
for example, should connect to the service in Australia. If you are a laptop
user and travel extensively, you may need to change the service location to
which you connect based on the service that is closest to you at the time
you run LiveUpdate.

If your company phone system requires that you dial a “9” or other code to
access an outside line In the Number to Dial wizard panel, there is an edit
box at the bottom of the panel with the caption, LiveUpdate will dial.
Normally, this edit box contains the phone number of the service to be
dialed. However, you can add whatever codes before or after the number
that you might need. Specifically, you may enter codes to access outside
lines, dial country codes, enter a calling card to bill the phone call to,
disable call waiting, access alternate long distance carriers as well as any
other required codes.

If you have call waiting on your phone line, you can disable call waiting so
that you won’t get disconnected if you receive a phone call while you are
using LiveUpdate. The code required to disable call waiting varies
depending on your phone system. Commonly, codes such as *70, 70#, or
1170, if dialed before the phone number, temporarily disable call waiting.
For the specific code to disable call waiting in your area, contact your local
phone company.

If you need to dial a particular access code, then wait for a few seconds
before dialing the remainder of the number. You can tell LiveUpdate to
pause by entering a comma (,) in the LiveUpdate dial edit box after the last
9-22

Updating Visual Cafe with LiveUpdate
digit where you want the pause to occur. The comma causes a modem-
dependent pause period. Commonly, it causes a pause of a few seconds.
To increase the time, add additional commas.

Troubleshooting a LiveUpdate connection

If you are informed that LiveUpdate detected a problem while retrieving
your software update, run LiveUpdate again.

While a number of errors may have occurred, the single most likely
problem is that you have insufficient hard disk space to accommodate the
size of the software update being downloaded, especially with larger
updates. The updates are compressed, so they require additional hard
drive space beyond their original (compressed) size. If there is not enough
space for the final files, this error may be displayed. If this error occurs,
you should clear some hard drive space (usually on the drive that contains
Windows) and try LiveUpdate again.

LiveUpdate informs you if you have the latest software update for your
product. When you next use LiveUpdate, it will retrieve any updates that
have been released since you last ran LiveUpdate.

Uninstalling LiveUpdate upgrades

After you have uninstalled previous software upgrades, your Windows 95
or Windows NT registry may still be “dirty” and therefore not allow
LiveUpdate to install upgrades to Visual Cafe.

LiveUpdate includes a utility within the Visual Cafe directory to “clean up”
the registry for Windows 95 or Windows NT and allow you to use
LiveUpdate again to install upgrades to Visual Cafe.

Using LUCLEAN.EXE

LUCLEAN.EXE removes any changes LiveUpdate leaves behind in the
Windows registry. LUCLEAN.EXE is non-destructive to any component of
the operating system.

To run LUCLEAN.EXE:

1 Open a DOS session window

2 Switch to the Visual Cafe directory

3 Type LUCLEAN.EXE /LU
9-23

Chapter 9: Fine-Tuning Visual Cafe
4 Restart your computer and run LiveUpdate again.

Troubleshooting Visual Cafe for Windows
As with all development tools, your success with them can be dependent
on a number of things, and Visual Cafe is no exception. Your programs
may or may not work depending on your system configuration, Visual Cafe
environment settings, and your development and coding styles.

The following section provides some clues to solve the most frequently
encountered development problems with the Java language and Visual
Cafe.

Limitations of the Java language

Java has some architectural limitations that keep it from performing certain
tasks.

Java and case sensitivity

Java compilers and interpreters are case sensitive, meaning that upper case
letters are distinguished from lower case letters. Hello.java is not the
same file as hello.java . The different use of capital letters indicates that
these files are not the same.

When a .java source file is compiled, the compiler creates a file with a
.class extension. The name that the compiler assigns to that .class file
is taken from the class definition in the source file. Essentially, the class
you define in the source code becomes the name of your program. Like all
things in Java, the class definition is case sensitive.

Because of the case sensitive nature of Java code, compilers, and
interpreters, it is important to be careful and consistent when you name
projects, source files, and classes.

To prevent problems resulting from case sensitivity, get in the habit of
always naming the project and the main source file with the same case
sensitive name as the class you are creating.

Hardware limitations

Another limitation of the Java language is its inability to communicate
directly with computer hardware, such as video cards and modems, or any
9-24

Common programming errors
other devices that use some kind of port on a computer. The Java VM is
blind to system-specific resource details, making it impossible for Java to
access hardware.

Such tasks as printing and modem control are useless with Java, but JDK
2.0 is supposed to remedy these problems.

Common programming errors
The most common compiler errors result from improper syntax. The
compiler can only understand source code that has been formatted
correctly. Some of the most common mistakes are:
■ Misspelled words (keywords, methods)
■ Missing, or incorrect separators (periods, braces, semicolons)
■ Improper use of case (capitalization)

One compiler error can generate multiple error messages. For example,
you could misspell the name of a method that you call from your program.
Although you misspelled it only once, your program may reference the
misspelled method multiple times. The result is multiple compiler errors
from a single typing error.

Sometimes the compiler error message will indicate exactly what caused
the problem. You may have to inspect the troublesome line of code
character-by-character to locate the source of the problem.

Compiler errors
A compiler error occurs when the compiler does not understand a portion
of your source code. Even in the simplest program, it is easy to write code
that will result in a compiler error.

There is a difference between compiler errors and programming errors. For
example, if source code fails to compile successfully, you have a compiler
error. If the source code compiles successfully but does not run as you
expect, you have a programming error. It is possible for a program to
compile successfully and still not run. Fixing the logic of your program to
get it to run the way you want is called debugging your program.

The Messages Window displays all of the compiler errors encountered
each time you build or compile a program.
9-25

Chapter 9: Fine-Tuning Visual Cafe
Using Visual Cafe to locate compiler errors
When the compiler encounters an error in the source code, the error is
displayed in the Messages Window. Double-click the error message to
jump to the line containing the error. The editor highlights the error. The
integration between the Messages Window and the Source Editor saves
you from searching through every line of your code to find an error.

Cross-platform considerations
Probably the most powerful feature of the Java language is being able to
run Java programs on a variety of platforms and Web browsers. For
example, it is common to develop your Java program with Visual Cafe for
Macintosh and then run your Java program on the Windows or UNIX
platforms.

Visual Cafe cross-development

The .java and .class files that Visual Cafe for Windows and Macintosh
are cross-compatible. However, the project files that are generated on each
platform are not cross-compatible. If you want to transfer .java and
.class files between platforms, create new projects and add the files.

These incompatibilities will be removed in future releases of Visual Cafe
for each platform.

Browser issues

Although Visual Cafe is designed to be an efficient and fast development
tool, you must also develop your Java applet to run on other combinations
of platforms and Web browsers.

Besides the built-in security restrictions that are in Java applets, your Java
applet will probably have a different look and feel (and sometimes
behave) differently on other platforms and browsers. Here are some things
to consider while you are developing your Java program.
■ Select or design your GUI (graphical user interface) components

carefully. For example, a button being viewed with the Macintosh
version of Netscape will look different when you run the same
program in Microsoft Internet Explorer for Windows NT. The same
9-26

When do you have to write your own code?
button could look different between the different versions of Netscape
Navigator for the various flavors of UNIX.

■ Understand how your platform and browsers handle threads.
Macintosh, Windows 95, Windows NT, and UNIX operating systems
each handle threading differently, as well as their respective browsers.

■ Each platform and browser has its own way of terminating applets. For
example, when you start an applet in one browser, move to another
page, then move back to the original page, the applet still runs and is
consuming resources. In other browsers the same applet will terminate
when you move to another Web page and then back. As of this
writing, this inconsistency is not due to a Java language-specific
problem, but rather a lack of standards for implementing Java
capabilities in Web browsers.

When do you have to write your own code?
Generally, Visual Cafe generates all the source code you need to quickly
create basic applets and applications without having to write much of your
own source code. Visual Cafe also provides the framework for developing
much more complicated applets and applications, eliminating the need for
writing the routine and tedious source code and allowing you to develop
and write the more sophisticated aspects of your Java program.

Event handling

One such situation where you will need to write your own code is when
you need to implement event handling that can’t be done through the
Interaction Wizard.

Disabling automatic code generation in Visual Cafe

If you don’t need to use some of the RAD features of Visual Cafe, such as
automatic code generation, you can disable it.

You can removing the //{{INIT_CONTROLS line and its corresponding
closing //}}. Also, remove the //{{DECLARE_CONTROLS line and its
corresponding closing //}}. Removing these lines disables the Form
designer and Visual Cafe stops altering your code.

However, this fix is not permanent. If you add anything to the applet by
dragging it from the Component toolbar or the Component library, the
9-27

Chapter 9: Fine-Tuning Visual Cafe
sections will be added back to the project and you will have to remove
them again.

Disabling code that is automatically generated

You can tell Visual Cafe not to execute code that it generates. Place the
Visual Cafe generated code between a block like this:

if(false) {

//{{INIT_CONTROLS

.

.

.

//}}

}

Visual Cafe sees your code at design time, but at runtime, the code that is
automatically generated is ignored.

How to tell when your Visual Cafe environment becomes
corrupted

When you start Visual Cafe, if your Component Palette is empty, or if you
get an error saying "There are no starter templates in your repository", your
Visual Cafe environment is probably corrupted.

To restore your Visual Cafe environment back to its working state:

1 Quit Visual Cafe.

2 In the VisualCafe\Bin directory delete the files:

local.rps

vcafe.reg

Visual Cafe.vws

3 Restart Visual Cafe.
9-28

II

P r o f e s s i o n a l

F e a t u r e s

C H A P T E R 10
Creating Native Win32
Java Applications

Visual Cafe Professional Development Edition lets you create native Win32
Java applications that run without using the virtual machine. Native Win32
Java applications offer the following advantages over bytecode Java
applications:
■ Speed – Because you do not need to run native Win32 applications

using a Java virtual machine, applications will run faster.
■ Packaging – Unlike bytecode Java applications in which all the class

files must be available in order to run the application, Native Win32
Java projects can create an executable (EXE) file that contains all the
class information.

■ Compatibility with already existing executable and dynamic link library
(DLL) files – You can include code already written in C or C++ in your
native Win32 Java applications with minor modifications.

■ Portability – Application projects written for native Win32 still generate
all the class files necessary to port the Java code to another platform.

In addition to creating new native Win32 Java applications, you can also
convert your existing bytecode applications into native Win32 code.

Support for native development includes several Sun and Symantec Java
API packages already converted to DLLs. The following table lists the
10-1

Chapter 10: Creating Native Win32 Java Applications
import library files, the DLL files, and what packages are contained within
each file.

To find out what classes are specifically contained in each DLL, see
packlst.txt in the Redist directory of Visual Cafe. This file will
always have the most current information regarding the classes stored in
each DLL.

This chapter contains an overview of the steps to create native Win32 Java
applications or convert existing bytecode applications to native, things to
remember while working with native applications, and an example of
creating a simple native executable with a DLL.

Creating native executables and DLLs
The process of creating a native executable or DLL file is very similar to the
process used to create bytecode Java applications. In general, the
development cycle is made of these basic steps:

1 Create a new project.

To get started quickly, you can use the Basic Win32 GUI Application,
Basic Win32 Console Application or Basic Win32 Dynamic Link Library
project template.

2 Design the user interface.

Library File DLL File Java API Package Type

Snjrt11.LIB Snjrt11.DLL Core API

Snjbeans11.LIB Snjbeans11.DLL Beans

Snjres11.LIB Snjres11.DLL Resource support including audio

Snjnet11.LIB Snjnet11.DLL Networking and Internet support

Snjmath11.LIB Snjmath11.DLL Math

Snjzip11.LIB Snjzip11.DLL Compression

Snjsec11.LIB Snjsec11.DLL Security

Snjrmi11.LIB Snjrmi11.DLL RMI

Snjawt11.LIB Snjawt11.DLL AWT

Symbeans.LIB Symbeans.DLL Visual Cafe Components
10-2

Creating native executables and DLLs
See Chapter 5, “Including Visual Components” for more information.

3 Enhance Java source code.

See Chapter 4, “Working with Java Source Code.”

4 Set project options.

See the section "Setting project options for native applications" in this
chapter.

5 Test run the application or DLL in Visual Cafe.

See Chapter 6, “Compiling, running, and deploying your program.”

6 Debug the application or DLL , if needed.

See "Debugging Native Win32 Java applications" in this chapter.

7 Test run the application or DLL outside of Visual Cafe.

See Chapter 6, “Compiling, running, and deploying your program.”

8 Deploy the application or DLL.

See Chapter 6, “Compiling, running, and deploying your program.”

9 (Optional) Register the DLL using SNJREG.EXE, if necessary.

See "Registering DLLs using SNJREG" in this chapter.

An example of creating a simple native executable with a DLL can be
found in the section “Example of creating an executable file” on page 10-
17.

Setting project options for native applications

When you create a native Win32 Java executable or DLL you need to set
the project options so Visual Cafe recognizes that you are developing
Native Win32 Java applications. You also need to set options to tell Visual
Cafe to debug a native Win32 Java application.

This section contains information on setting project options specific to
building native applications. For information on general project options,
see Chapter 3, “Working with projects and workspaces.”

Specifying the name of a native application or DLL

Visual Cafe provides a default file name of untitled to executable and DLL
files. The default file name is untitled.exe or untitled.dll. You can change
the name from the default by performing the following steps.
10-3

Chapter 10: Creating Native Win32 Java Applications
To specify the name of a native executable or library:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Set the Project Type field to Win32 Application or Win32 Dynamic Link
Library.

5 Enter the executable or library file name in the Application or Library
name field.

The application name is by default the project name, appended with
the .exe extension.

The library name is by default the project name, appended with the
.dll extension.
10-4

Creating native executables and DLLs
The import library name is the name of the import library file that gets
created along with your DLL. It is by default the project name,
appended with the .lib extension.

6 Click OK.

The change takes effect the next time you run your project.

Specifying a program for running and debugging a DLL

Because DLLs are called by an executable file to run, you need to specify
the name and path of the executable file so Visual Cafe can run the DLLs
for testing or debugging.

To specify an executable file for running or debugging a DLL:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.
10-5

Chapter 10: Creating Native Win32 Java Applications
4 Set the Project Type field to Win32 Dynamic Link Library.

5 Type the name of the executable in the Calling program field.

6 Click OK.

The change takes effect the next time you debug the DLL.

In the Calling program field, you specify the name and fully qualified path
to the executable. If you do not specify a fully qualified path, Visual Cafe
looks in the project directory, then through the directories in your
Windows PATH environment variable.

When the calling program tries to load the DLL, it looks for the DLL in the
following order:
■ The directory from which the application loaded. This is the project

directory or, if you specified a full path, the directory where the
program resides.

■ The current working directory, if different from the directory from
which the application loaded.

■ For Windows 95, the Windows system directory. For Windows NT, the
32-bit Windows system directory, then the 16-bit Windows system
directory.

■ The Windows directory.
■ The directories that are listed in the Windows PATH environment

variable.

Specifying a class or package to be exported

When you build DLLs you need to tell Visual Cafe which classes or
packages can be used by calling programs.

To specify a class or package to be exported:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.
10-6

Creating native executables and DLLs
3 In the Project Options dialog box, click the Compiler tab.

4 Set the Compiler Category to Exports (Win32 only).

5 Choose the classes or packages you want to make available to other
projects by clicking on them.

6 Click OK.

The change takes effect the next time you build your project.
10-7

Chapter 10: Creating Native Win32 Java Applications
Specifying advanced Win32 compiler options

Visual Cafe provides you with additional options that allow you control
aspects of how Visual Cafe compiles files.

To specify a class or package to be exported:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Compiler tab.

4 Set the Compiler Category to Advanced.
10-8

Creating native executables and DLLs
5 Click the checkboxes of the items you want to select. There are three
options:

6 Click OK.

The change takes effect the next time you build your project.

Including library files to be compiled in the main project

In order to build the executable file and the associated DLL files, Visual
Cafe needs to know the names of the import library files for the associated
DLLs.

To include import library files:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

Option Description

GUI application Suppresses the console window.

The default setting is disabled.

Use performance profiling Attributes the code with profiling calls so
the executable can generate profiling
information.

The default setting is not selected.

P6 Pentium code generation Generate P6 Pentium code.

The default setting is to generate P5
Pentium code.
10-9

Chapter 10: Creating Native Win32 Java Applications
3 In the Project Options dialog box, click the Compiler tab.

4 Set the Compiler category to Libraries (Win32 only).

5 Add the library file.

6 Click OK.

The change takes effect the next time you run your project.

Making a library file available to a project

Since a library file may be in a different directory from the main project,
you can specify the directory in which the library files you want to use are
10-10

Creating native executables and DLLs
located. If you have already specified all the library files you are including
in a project, you do not need to specify a directory.

To set the directory:

1 Activate the Project window of the project you want to work with.

2 From the Project window, choose Options.

3 In the Project Options dialog box, click the Directories tab.

4 Set the Show Directories for Option field to Library files.

5 Select from the list of directories available or add the directory where
the library files are located.

6 Click OK.
10-11

Chapter 10: Creating Native Win32 Java Applications
The change takes effect the next time you run your project.

Registering DLLs using SNJREG

Unlike bytecode Java applications, native Win32 Java applications cannot
use the CLASSPATH to find classes and packages. Instead, the Windows
path is searched to locate classes and packages in DLLs. Classes that are
dynamically loaded must have their names stored in the Windows registry.
The native classes and packages Symantec provides with Visual Cafe are
already registered when Visual Cafe is installed.

If you create a DLL whose class or package names are not stored in the
registry, the packages or classes in the DLL might not be found by an
application that loads these classes dynamically at runtime and you will
receive an error message. SNJREG allows you to enter the package or class
name and which DLL files contain the package or class.

SNJREG has the following parameters:

To register a package in a DLL file using SNJREG:

1 Open a DOS Window.

2 Change to the directory where the DLL files are located.

3 Enter:

SNJREG [options] file1.dll file2.dll file3.dll

where options can be any of the parameters in the table above and
file1.dll, file2.dll , and file3.dll are the names of the

Parameter Description

-class DLLs register individual classes, not packages.

Using -class will erase any previous DLL
references assigned to a class already
registered.

-noprompt Disables prompting the user before making
changes to existing entries

-nowarn Turns off all warnings

-verbose Reports all registrations made

-reg file.reg Creates a registry file where file.reg is the name
you give the new registry file
10-12

Creating native executables and DLLs
DLL files from which you are registering the classes or packages. You
may enter the names of as many DLL files as you want. If the DLL files
are not in the current directory, make sure you enter the full path for
each file.

Debugging Native Win32 Java applications

You can debug native applications and DLLs in Visual Cafe the same as
you would debug bytecode programs. For DLLs, you need to specify the
calling program you want to use to run and debug your DLL. See
“Specifying a program for running and debugging a DLL” on page 10-5 for
more information.

Note the following differences between debugging native and bytecode
programs:
■ The Calls and Threads windows are different for native and bytecode

programs.
■ When debugging native code while incremental debugging is enabled,

you can add new methods, while with bytecode you cannot.
■ You cannot perform remote debugging.

For more information on debugging applications, see Chapter 8,
“Debugging Java Programs.”

Deploying native Win32 applications, DLLs and libraries

To deploy your native Win32 application, you need the DLLs the program
requires. Visual Cafe comes with the standard DLLs you need to run your
Java programs. The redistributable Visual Cafe DLLs are in the redist
directory. You only need snjrmiregistry.exe if you have a remote method
invocation (RMI) executable that is like one of the samples, which does not
start the naming server itself (The other RMI sample does not require
snjrmiregistry.exe.). You also need any DLLS that your DLL requires,
including DLLs you created.

You need to register any dynamically loaded DLLs on the computer where
the executable will run or the DLL is used. To do so, you can use the
SNJREG tool. To do so, you can use the SNJREG tool. See Registering DLLs
with SNJREG for more information.

To create a program that uses your custom DLL, you need to provide the
class files, the library file (which is created when the DLL is created), and
the DLL. The class files must be on the class path and the library should be
10-13

Chapter 10: Creating Native Win32 Java Applications
specified in the compiler options for the project. To run a program that
uses a DLL, all you need is the DLL, and you need to register it.

Converting Java applications from bytecode to
native Win32

If you already have Java applications that you want to run in the WIn32
environment , you can convert them from bytecode to native Win32 code
for easier packaging and increased speed benefits. See the sample
Conversion in the Samples\Symantec\Tutorials\Win32 directory.

To convert your bytecode Java application to native Win32:

1 Open the project you want to convert.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Change the Project Type field to Win32 Application or Dynamic Link
Library.
■ Choose Win32 Application if the project does not contain any files

you want to use with other native Win32 applications.
■ Choose Win32 Dynamic Link Library if you will be sharing the code

with other native Win32 applications.

5 Click OK.

Based on the choices you make in the Project Tab, you may need to
change additional Project Options in order to build your application
successfully. See “Setting project options for native applications” on
page 10-3 and “Considerations when creating native Win32 Java
applications” on page 10-15 for more information. If you need to register
DLLs, see “Registering DLLs using SNJREG” on page 10-12. If your project
has errors when you build it, see “Debugging Native Win32 Java
applications” on page 10-13. See Chapter 3, “Working with projects and
workspaces” for information on setting class file directories.

Note: SNJRT11.DLL does not need to be added to converted applications.
It is added at compile time for native Win32 applications.
10-14

Considerations when creating native Win32 Java applications
Considerations when creating native Win32 Java
applications

There are several things you can do when developing native Win32 Java
applications to minimize build errors. Keep the following in mind when
creating native Win32 Java applications:
■ Keep all the files in a project. Build any DLLs as subprojects that you

add to the main project.
■ Use SNJREG to register any Java DLLs you create.
■ When compiling DLLs in the command line, use the -export option.
■ Remember that SNJRT11.LIB is automatically linked to your project.
■ During runtime of the executable, make sure that the path includes the

proper folder containing the DLLs.
■ Statically linked DLLs have to be in the Windows path. For an

example, see the staticDLL sample in the
Samples\Symantec\Tutorials\Win32 folder.

■ Before running an application that dynamically loads classes during
runtime, you must register the DLLs using SNJREG. For example, if you
use Class.forName(className) , to access a class in a DLL, you
need to register the DLL. The sample, dynamicDLL, in the
Samples\Symantec\Tutorials\Win32 folder illustrates this.

■ If you link object files that contain static members to different library or
DLL files in a project, be aware that there is now more than one copy
of the static member.

■ Do not include any library files in the Files tab of the Project window.
Include library files in a project by using the Compiler tab in the
Project Options. For more information, see “Including library files to be
compiled in the main project” on page 10-9.

In addition to the considerations listed above, you must keep in mind that
native Win32 Java application development uses linking when compiling
and that the main class is treated differently in native Win32 development.

Linking native Java applications

There may be extra steps you need to perform for a native project to link
that you don’t need to do for a bytecode project. In bytecode, Java uses
the classpath to dynamically and automatically resolve references to
classes. However, in native Win32 applications the Java classpath is not
10-15

Chapter 10: Creating Native Win32 Java Applications
used to resolve these references. They must be resolved by static linking,
which means they are resolved when the application is built.

Resolution by static linking occurs in the traditional compile/link
mechanism. The object (.obj) files, which are generated by the sj compiler
for each Java class, are linked together by the linker which resolves the
references. The project system supplies the linker with the object files and
libraries necessary to build your native Java executable. Linker errors will
occur if the linker was unable to resolve some reference made to a class in
your project. Typically, an object file corresponding to a class that your
project uses did not get passed to the linker by the project system.
Standard Java runtime libraries and Symantec components are
automatically supplied by the project system.

To prevent linker errors, you need to add the Java source file for any
missing classes to your project. Other possible solutions include adding the
missing object files or import libraries to your project. Any symbols in
source files, object files or import libraries that are in your project will be
passed to the linker and used to resolve references when you build an
application. See “Setting project options for native applications” on
page 10-3 for more information.

As in bytecode, native Java applications allow programs to dynamically
load arbitrary classes at runtime, without requiring them to be statically
linked. However classes that are not statically linked into your application
at build time must exist in a separately compiled dynamic linked library
(DLL) and be registered in the Windows registry by using the SNJREG tool.
For more information, see “Registering DLLs using SNJREG” on page 10-12.

The main class in bytecode and native applications

The main class is the name of the class with a main method. For both a
bytecode Java application and a native Win32 Java application, the main
class is the starting point of execution. However, you should note these
differences between bytecode and native applications:
■ When you run a bytecode application from the command line, you

type the name of the Java file that contains the main method as the first
argument to Java.exe. For a native Win32 application, you run the
application outside the Visual Cafe environment as you would any
other executable and use the application name, not the main class
name. See "Specifying a program for running and debugging a DLL"
and "Specifying the name of a native application or DLL" for more
information.
10-16

Working with samples of native applications
■ An application must have a main class containing a main method with
this signature:

static public void main(String args[])

For a bytecode application, if it does not have a method of this format, the
application can compile but will not run. For a native application, the
application cannot link or run.

Working with samples of native applications
To illustrate how to create native Win32 Java applications, Symantec has
provided several simple sample applications. These applications
demonstrate how to create an EXE file, how to create an EXE and DLLs,
what type of project requires you to register a DLL, working with the RMI
registry, resource binding, and working with C code and JNI. The samples
are located in the Samples\Symantec\Tutorials\Win32 directory. The
following examples use the *.java files found in the sample called Exe. If
you choose to use any of the samples, copy them to a new folder before
making any changes to the code or the project options.

Example of creating an executable file

Creating a native Win32 Java application is very similar to creating a
bytecode application. The example below builds a simple Win32
application that prints the word Hello.

To create a Win32 executable file:

1 Create a new project by choosing New project from the file menu and
selecting Win32 console application.

2 Create a source file called Main.java that contains the following code:

public class Main

{

 public static void main(String args[])

 {

 Hello hi = new Hello();

 hi.printHello();

 }

}

3 Add a second source file called Hello.java with the following code:

public class Hello
10-17

Chapter 10: Creating Native Win32 Java Applications
{

 public void printHello()

 {

 System.out.println("Hello");

 }

}

4 Delete the file SimplCon.java.

5 From the Project menu, choose Options, and using the Project Options
dialog box, type Main in the main class field, and type simple.exe
in the Application name field.

6 Compile and execute the application by choosing Execute from the
Project menu.

7 Save the project to new directory called simple .

When you compile a native Win32 executable, the .java files are compiled
into both class files and object files. Next, the object files are linked
together to create an EXE file.

Example of creating an executable with a DLL

Let’s take this example further by building an executable and a DLL file.
The two files Hello.java and Main.java stay the same.

To create an executable and a DLL file:

1 Save the Simple project to a new name and directory, both called
Simple3 and remove all files with the name Hello from the Simple3
directory.

1 Create a project for a DLL by choosing New Project from the File
menu. Use the resulting dialog box to select Basic Win32 Dynamic
Link Library as the project type.

2 Add Hello.java from the Simple directory to the project, and
delete SimplDLL.java .

Note: If you were creating a DLL project from scratch, you would
not delete the SimplDLL.java file, but use it as a template.

3 Save the project to a new directory called Simple2.

4 Set the project options for the DLL by choosing Options from the
Project menu, and using the Project Options dialog box to select
simple3.exe as calling program, Hello.dll as Library Name, and
10-18

Working with samples of native applications
Hello.lib as Import Library name. See “Setting project options for
native applications” on page 10-3 for more information.

5 Make the Hello class exportable. See “Specifying a class or package to
be exported” on page 10-6 for more information.

6 Build the project to generate Hello.lib and Hello.DLL .

After creating the DLL ,you need to add the Simple2 project as a subproject
to the main project, Simple3.

To add the DLL to the Simple3 project:

1 Create a new WIn32 application project.

2 Delete all files from the project and add Main.java.

3 From the Project menu, choose Options, and using the Project Options
dialog box, type Main in the main class field, and type simple.exe
in the Application name field.

4 From the Insert menu, choose Files into Project.

5 Select simple2.vep and click Add.

6 Click OK to add the VEP file to the project.

7 Save the project as Simple3 in a new directory called Simple3.

8 Make Hello.lib a recognized library file. See “Including library files
to be compiled in the main project” on page 10-9 for more
information.

9 Build the simple3 project and execute.

What happens in this example is similar to building an EXE alone. The
major differences are:
■ more project options need to be set.
■ the build order of the subproject and project must be considered when

a DLL file is linked with an EXE file.
■ .lib files are linked to the exe instead of linking multiple object files

to form an exe.
10-19

C H A P T E R 11
Incremental Debugging
and Importing Projects

Visual Cafe Professional Development Edition provides many debugger
tools including incremental debugging. Incremental debugging, also
referred to as run-time editing, allows you to run your applet or application
and debug it without starting over from the beginning of the code every
time you locate and fix a bug.

Visual Cafe Professional Development Edition can not only read projects
from older versions of Visual Cafe, it can also import Cafe and Visual J++
projects. This gives you more flexibility since you no longer have to
rebuild project files created in these products. Importing Cafe projects
includes the importing of any subprojects inside a Cafe project.

Incremental debugging
Visual Cafe has several incremental debugging features that make
debugging your Java programs more efficient. While your program is
executing or paused in the Visual Cafe debugger, you can edit your Java
program and immediately see the effects of the code change. This is also
called run-time editing. The code is compiled and saved automatically.

You enable run-time editing by choosing Environment Options >
Debugging from the Tools menu. See Chapter 9, “Fine-Tuning Visual Cafe.”

Choose Update Now from the Debug menu to force an incremental update
and save all files. Use this command when you want to save all the
changes you have made to your files.
11-1

Chapter 11: Incremental Debugging and Importing Projects
Choose Restart Method from the Debug menu to take you back to the
method that called the currently active method.

Note: You should not think of the Restart Method command as a type of
undo command, because it cannot undo some edits, such as variable edits.
It does not undo side effects of code that was run; an example could be if
part of a program runs two times and causes an exit. Use the command
when you want to restart the method you are currently debugging.

Another incremental debugging feature is if you change a portion of code
that is active (anywhere on the call stack), the code is compiled and saved,
and you get a dialog box asking what action you want to take:
■ Restart the program – Start the program from the beginning in the

debugger.
■ Restart the active method – Start the active method again. (This option

is only valid if you perform run-time editing while your program is
paused.)

■ Continue – Continue with the old code until the next time the code
becomes active. Ignore breakpoints in this code until the code
becomes active again.

■ Stop debugging – Exit the debugger.

The recommended action is already selected for you in the dialog box.

Note: When debugging native Win32 code, you can add new methods,
while with bytecode you cannot.

For more information on debugging applications in Visual Cafe, see
Chapter 8, “Debugging Java Programs.”

Importing projects from Cafe
If you previously owned Cafe and are moving to Visual Cafe, you may
want to import your Cafe projects to take advantage of Visual Cafe’s rapid
application development (RAD) environment.

To import a project:

1 From the File menu, choose Open.

The Open dialog box appears.
11-2

Importing Visual J++ projects into Visual Cafe
2 Choose Cafe projects as the file type.

3 Locate the correct directory and select the project file.

4 Click OK.

Your project is opened in Visual Cafe. All subprojects in the project are
available.

Caution: Visual Cafe projects can not be read by Cafe. You can
still move the source files between the two products.

Importing Visual J++ projects into Visual Cafe
Your Visual J++ project is converted automatically when you open the
workspace (dsw) or project (dsp) file with Visual Cafe. If you open the
workspace file, some of your workspace options (stored in an opt file) are
preserved; these settings are not imported if you open the project file
directly.

When Visual Cafe converts a project through the workspace file, it gives
the project the same name as the Visual J workspace file and saves it
immediately in the same directory as the workspace. If your workspace
contains multiple projects, first convert the projects that are in their own
directories first, then convert the project stored in the same directory as the
workspace file. For a more complete list of considerations, see
“Considerations when importing Visual J++ projects” on page 11-5.

Note: It is best to work from a copy of your Visual J++ files instead of the
originals.

To import a project through the dsw workspace file:

1 From the File menu, choose Open.

The Open dialog box appears.

2 Choose Visual J++ Workspace Files in the Files of type field.

3 Locate the directory that contains the dsw file for the project you want
to import.

The dsw and dsp files appear.

4 Select the dsw file from the list, then click Open.
11-3

Chapter 11: Incremental Debugging and Importing Projects
5 If there is more than one project in the workspace, a dialog box
appears that asks what project you want to convert. Select the project,
then click OK.

6 If you have more than two configurations defined for the project, or if
you have two configurations and neither of them are named “Debug,”
a dialog box appears that asks what configuration you want to use for
the Visual Cafe Debug and Final option sets. Select the configuration
and click OK in each dialog box.

The project is converted and opens in a Visual Cafe Project window.

7 Review the Visual Cafe project options and change them as needed.

8 If the Visual J++ project was in a different directory than the dsw file,
choose Save As from the File menu to save your new project to the
directory where the project dsp file is. If you want, you can rename the
project at the same time.

Tip: Remember that a Visual J++ project is given the same name as
the Visual J++ workspace if the project file is in the same directory
as the workspace file.

If you save the project to another directory, you can delete the Visual
Cafe project files in the same directory as the workspace. Or you can
just let them be overwritten when you import the next project.

To import a project through the dsp project file:

1 From the File menu, choose Open.

The Open dialog box appears.

2 Choose Visual J++ Workspace Files in the Files of type field.

3 Locate the directory that contains the dsp file for the project you want
to import.

The dsw and dsp files appear.

4 Select the dsp file from the list, then click Open.

5 If you have more than two configurations defined for the project, or if
you have two configurations and neither of them are named “Debug,”
a dialog box appears that asks what configuration you want to use for
the Visual Cafe Debug and Final option sets. Select the configuration
and click OK in each dialog box.

The project is converted and opens in a Visual Cafe Project window.

6 Review the Visual Cafe project options and change them as needed.

7 Save your new project.
11-4

Importing Visual J++ projects into Visual Cafe
Considerations when importing Visual J++ projects

Your Visual J++ project is converted automatically when you open a
workspace file (dsw) or project file (dsp) with Visual Cafe. While Visual
Cafe has projects, Visual J++ has workspaces that contain projects. A
workspace is made of a workspace file and an opt options file.
Information about the projects a workspace contains is stored in a project
file (one per project) and the options file. Because the name of the options
file is not stored in the project file, it is usually better to import projects
through the workspace file rather than the project file.

The following options are preserved from the Visual J++ opt file when you
import a project through the dsw file or you import a dsp file that has the
same name as the opt file and the opt file is in the same directory.

The following options are preserved from the dsp project file, whether
you open a workspace or project file.

Visual Cafe project option Visual J++ configuration that sets it

Project type field in Project
tab

The Debug/Execute project under Browser and
Stand-alone interpreter options determine the setting.

Start with Web page field
in Project tab

The Use parameters from HTML page value is used;
or the Enter parameters below option tells Visual
Cafe to use Automatic.

Main class field in Project
tab

The Class for debugging/executing value is used.

Runtime arguments field in
Project tab

The Program arguments value is used.

Class Files list in
Directories tab

The Class path directories setting is used. Note that in
Visual Cafe the Append class path and Autogenerate
class path options are selected by default.

Visual Cafe project option Visual J++ configuration that sets it

Output directory field in
Directories tab

The Output directory value is used.

Show compiler warnings
option in Compiler tab

A Warning Level of None tells Visual Cafe to deselect
the option; any other value means the option is
selected.
11-5

Chapter 11: Incremental Debugging and Importing Projects
Here are some additional considerations when importing Visual J++
projects:
■ If you want to maintain your Visual J++ workspace and projects, you

should copy the files to another directory before conversion.
■ Converted projects cannot be saved back into Visual J++ format.
■ Only Visual J++ version 1.1 workspace and project files can be

imported. However, you can add Java source files created in another
product to a Visual Cafe project. For instructions, see Chapter 3,
“Working with projects and workspaces.”

■ Visual Cafe can read Visual J++ java files that are 100% pure Java,
without proprietary Java extensions implemented by Microsoft.

■ class files compiled with Visual Cafe might not be compatible with
Visual J++, so you probably want to make sure your output directories
are different for each product.

■ You cannot import projects that use variable persistence, such as
having the location of a file be stored as
d:\mysource\$(SRCDIR)\a.java , where SRCDIR is an
environment variable and a.java is the file. In Visual Cafe, you cannot
use environment variables to control where Visual Cafe looks for a
java file. If you want to import a project that uses variable
persistence, you need to remove variable persistence before importing
the project into Visual Cafe.

■ While Visual J++ lets you specify a different project type, applet or
application, for different configurations, Visual Cafe supports one
project type per project. If the project type is different for the debug
and final option sets, Visual Cafe uses the project type specified for
debug.

Generate debug
information option in
Compiler tab

The Generate Debug info value is used.

Visual Cafe project option Visual J++ configuration that sets it
11-6

III

D a t a b a s e

C o n n e c t i v i t y

C H A P T E R 12
Developing a dbAWARE
project

By using Symantec’s Visual Cafe Database Development Environment, you
can develop Java applets and applications which have components that
interact with a database.

The Visual Cafe Database Development Environment has wizards that walk
you through the setup of a dbAWARE project. Using these wizards you can
quickly identify a data source for your applet or application and add
buttons, which encapsulate database interactions, to your graphic interface.
The Visual Cafe wizards automatically generate the necessary Java code for
communicating with your server software while you use the wizards to
create your Java applet or application.

An example of a dbAWARE applet might be an e-mail form for your Web
page. An application might be a stock ticker application, which gets
information from a database on the Web and stores it in a database on your
local machine.

This chapter includes:
■ An overview of the Visual Cafe Database Development Environment
■ Steps for building a dbAWARE project

Note: The Symantec Visual Cafe Database Development Environment
includes its own middleware software called dbANYWHERE. You must
configure dbANYWHERE and have it running in the background before
your applet or application can connect to a database. See Chapter 13,
“Using dbANYWHERE.”
12-1

Chapter 12: Developing a dbAWARE project
Overview
The Visual Cafe Database Development Environment consists of all the
Visual Cafe functionality plus the following database features:
■ Database Environment Options settings
■ The dbAWARE components
■ The dbNAVIGATOR database browser
■ Wizards to guide you through creating database projects
■ Database functionality for navigation, state information, and so on

Setting the Database Environment Options

When you install the Database Development Edition of Visual Cafe, a
Database tab is added to the Environment Options dialog box. You use this
screen to create a list of the components to be associated with particular
data types.

To use the Database Environment Options dialog box setting:

1 Choose Environment Options from the Tools menu.

The Environment Options dialog box displays.

2 Click on the Database tab of the Environment Options.

The Database Environment Options displays.
12-2

Overview
About the dbAWARE components

You use dbAWARE components to interact with database elements. These
components provide the built-in functionality you need to display,
communicate, and connect with a database, thus saving you extensive
programming time and effort.

For example, you can set a dbAWARE TextField component to correspond
to a table column. When you do this, the text reflects the value stored in
that database table column.

Some of the dbAWARE components in the Visual Cafe Database
Development Environment are:
■ AutoDetail
■ Checkbox
■ ConnectionInfo
■ DBTstamp
■ FormattedTextField
■ Grid
■ ImageViewer
■ Label
■ List
■ MultiView
■ NervousText
■ Projection
■ RadioBox
■ RadioButton
■ RecordNumberLabel
■ RecordStateLabel
■ RelationView
■ Session
■ TextArea
■ TextField

Some of the most important database components are documented in the
following sections. For more information on any of these component’s
classes, see the dbANYWHERE API online HTML reference manual.
12-3

Chapter 12: Developing a dbAWARE project
The AutoDetail Component

An AutoDetail object is an intermediate object that is used to define the
properties for a Detail RelationView. A Detail RelationView typically
manages a set of records that are related to the current record in another
“parent” RelationView. For instance, a RelationView on a Department table
may have a detail RelationView on a Employee table where there is a set of
related records in the Employee table for every record in the Department
table.

This relationship is usually defined by a common column in both tables. In
this case, the data in the department id column for the Employee detail
RelationView matches (is equal to) the data in the id column for the
Department table. Whenever the current record changes in the Department
table (via a RelationView.next call, for instance) the set of records
available for the Employee detail RelationView automatically changes to
maintain the id relationship.

You can set this kind of master/detail relationship by dragging a second set
of database components including the database table with its RelationView,
onto the Form Designer or into the dbNavigator. When you do this, code is
automatically generated that sets the second RelationView to AutoDetail.

The most important properties you can set for an AutoDetail object are:
■ ConnectionInfo object
■ SQL select statement and join
■ Cardinality
■ Parent RelationView

ConnectionInfo object

This object holds the information needed to connect to a database. This
information includes the database string, and optionally the username and
password. AutoDetails are not restricted to connecting to the same
database as the parent relationview.

SQL select statement and join

For AutoDetails, the SQL select statement must define a where clause that
specifies the column that will be used to relate to the parent relationview.
For instance, the Employee detail SQL string would be

"select * from Employee where deptid = ?"
12-4

Overview
In this SQL statement, deptid is the column in Employee table that will be
used to define the relationship. The ? will be automatically replaced by the
data in the current record of the Department table.

Additionally, the related column in the Department table also needs to be
defined. This is done by calling AutoDetail.join method.

AutoDetail.join (1,"id");

The first parameter in the join method indicates the position of the ? in the
SQL Select statement. Since there is only one ? in the string, the number 1
is used. The second parameter is the name of the column in the parent
Relationview.

Cardinality

The cardinality property defines how the sets of records in both the parent
and detail relationviews are related. The dbANYWHERE server uses this
property to determine the order of database inserts, updates, and deletes.

The following table includes all the possible values for the Cardinality
property.

Parent RelationView

The parent RelationView is set during object construction. After the
AutoDetail is constructed, other properties can be set. When
AutoDetail.executeRequest is called, a new detail RelationView is created
and joined to the parent RelationView. (Optionally, a new RelationView
object can be constructed with the AutoDetail as the parameter.)

Values Example

ONE_TO_ONE One department record is related to
only one employee record.

ONE_TO_MANY One department record is related to
many Employee records. This is the
default setting.

MANY_TO_ONE Many department records are related to
only one employee record.

MANY_TO_MANY Many department records are related to
many employee records.
12-5

Chapter 12: Developing a dbAWARE project
The ConnectionInfo component

The ConnectionInfo component is an invisible component which contains
the data source definition. Basically, the data source is the information for
creating a database connection. The ConnectionInfo component includes
the name of the data source, its server location, and may also include a
user name and password.

You can drag the ConnectionInfo component from the Component Palette
or Library onto a form at any location, or into the Project window. If you
are using the Project Wizard or the Add Table Wizard, Visual Cafe
generates the necessary ConnectionInfo, Session, and RelationView
components for you.

Though a project can contain more than one ConnectionInfo component,
each ConnectionInfo component corresponds to only one database. The
applet or application that contains the ConnectionInfo component must
also include a Session component to enable it to connect to the
dbANYWHERE server.

The Grid component

This component is for displaying multiple data records. The grid
component provides an array, or spreadsheet-like display, of specified
data. You can also specify predefined buttons that display at the bottom of
the grid. You define these buttons in the Binding property of the grid.

You can adjust column widths at runtime but the column heading text can
be customized in code only.

You need to define a RelationView component to manage result sets which
you want to display in the grid on your form. (To find out more about the
RelationView, see “The RelationView component” on page 12-9.)
RelationView components are automatically added when you use the
dbNAVIGATOR or the dbAWARE Project Wizard.

The MultiView component

The MultiView object serves as both a container of RelationViews and a
controller for database transactions.

All RelationViews are contained within a MultiView. For those applications
that need to see multiple views of data (from the same or different
database), detail RelationViews can be created using the AutoDetail object.
12-6

Overview
These detail RelationViews become part of the same MultiView that the
parent Relationview is contained in.

As a container, the MultiView manages the link between a parent
RelationView and all of its detail RelationViews. Methods on the MultiView
are applied to all the contained RelationViews. For example, closing the
MultiView would close all its RelationViews.

The MultiView also controls database transactions. All requests for
RelationView data is ultimately sent to the dbANYWHERE server via the
MultiView object. The MultiView is also responsible for caching all changes
to data. When MultiView is saved (via a MultiView.save() or a
RelationView.saveMultiView()), all data changes are sent to the
dbANYWHERE server where they are finally committed to the database. All
data changes between calls to MultiView.save() are committed to the
database within a single transaction. Any database errors that occur during
save will rollback all data changes in the database. The MultiView's cache
of data changes remains unchanged allowing the error to be corrected and
the changes saved.

Typical applications don’t need access to the MultiView object. For that
reason, the construction of the MultiView is done within the constructor of
the Relationview object. There are also, helper methods, those with
MultiView in their name) which are part of the RelationView class. These
helper methods include: closeMultiView , getMultiView , saveMultiView ,
and restartMultiView .

The Projection component

Visual Cafe comes with a suite of dbAWARE visual controls that can be
bound to a RelationView in the Form Designer. With the Projection object,
a developer can also bind components, that are invisible at runtime, to a
RelationView column.

A common code scenario follows:

public class Customer {

RelationView rv;

public Projection name = new Projection();

public Projection address = new Projection();

public Projection phone = new Projection();

public Customer (RelationView relview) throws SQLException
12-7

Chapter 12: Developing a dbAWARE project
{

rv = relview;

//Bind projection to the corresponding columns in relview

rv.bind(rv.findProjByName("name"),name) ;

rv.bind(rv.findProjByName("address"),address) ;

rv.bind(rv.findProjByName("phone"),phone) ;
}

public boolean nextCustomer () throws SQLException
{

return rv.next();

//Projection objects now have new data

// which can be retrieved by using any of the methods

// in the DataAccess interface.
}

}

Another Sample usage is to bind a Projection to a column to automatically
capitalize on the data entered to send a state change notification.

public class CapState extends Projection {

public CapState ()

{

}

public init (ProjBinder binder)

{

super.init(binder);

}

public notifyDataChange (ProjBinder binder)

{

//get the new data value, upper case it, and set it back

//to the binder

binder.setString(binder.getString().toUpperCase());

}

public notifySetData(ProjBinder binder)

 {

//get the new data value, upper case it, and set it back
12-8

Overview
//to the binder

binder.setString(binder.getString().toUpperCase());

 }

}

The RelationView component

The RelationView component is where you define and maintain a result
set. For instance, a result set might be a set of data rows, the contents of
which are a set of data produced from all the rows of employees that have
a department ID of 200. The RelationView maintains that result set,
handling navigation and data manipulation operations on the data in the
result set. The RelationView also makes available the methods for inserting,
querying, deleting, updating and scrolling through the data rows of this
result set.

The RelationView object handles complex operations such as maintaining
master/detail relationships with other RelationViews, caching rows of data,
obtaining data on an as-needed basis, enhancing SQL performance, and
providing optimistic concurrency—ensuring that data changes only take
effect if other users are not changing the same data at the same time.

The RelationView object provides messaging to dbAWARE objects which
allow visualization and editing of the data. When data is changed in a
dbAWARE textfield, for example, the RelationView provides the mechanism
by which the data is bound to the result set. The RelationView also ensures
that all dbAWARE objects bound to that data are informed of the change,
for immediate updating.

The RelationView is the central controller for result sets. Interactions can be
made via the interaction wizard to control all the operations available in
the RelationView object. For example, if you wish to have a button which
causes the result set to be saved, you simply create an interaction between
a button and the RelationView. Select the interaction: Save Changes. Code
is automatically generated such that when the button is pressed, the
RelationView saves the current changes made in the result set. SQL is
generated to update only what is needed, to ensure concurrency and
integrity constraints are met, and to ensure that any related RelationViews’
result sets are updated in the correct order.
12-9

Chapter 12: Developing a dbAWARE project
Note that you should add a Session component prior to adding the
RelationView component. Then use the name of this component as the
value for the Session property of the RelationView.

The easiest way to add a Session component is by using the Project Wizard
and Add Table Wizard. You access the Project wizard by selecting the
dbAWARE Project Wizard from the window that displays when you choose
the File menu item New Project. You access the Add Table Wizard by
selecting Add Table Wizard from the Insert menu.

The Session component

The Session component is an invisible component at runtime. The Session
component defines the connection to a dbANYWHERE server, via a TCP
network connection, and provides access to the related dbANYWHERE
classes.

At runtime, the Session component generates code that creates a session
service via the dbANYWHERE server. A session service detects and discards
duplicate information packets in a two-way exchange of information. Each
session can only service one connection or uniform resource locator (URL).
You can add multiple Session components to show connections via
different servers.

Note: It is recommended that all connections to a single dbANYWHERE
server utilize the same Session component. This helps to reduce the
number of server connections.

About the database browser, dbNAVIGATOR

After connecting to dbANYWHERE and your database, you can use the
window called the dbNAVIGATOR, to navigate across the dbANYWHERE
servers to which you are connected and the databases managed by the
servers.

Within dbNAVIGATOR window, you can expand and contract the data
source listing and use drag-and-drop techniques to build your dbAWARE
forms.

The dbNAVIGATOR window shows the databases to which you are
connected. Using dbNAVIGATOR, you can view database contents in a
hierarchical manner. The dbNAVIGATOR shows the databases that you are
12-10

Overview
connected to, tables within the databases, and the columns within the
tables. This database information is commonly referred to as metadata.

In the following illustration, you can see the metadata for the Tutorial
database. This database is used with the Tour in the Getting Started with
Visual Cafe, Database Development Edition.

You can also use dbNAVIGATOR to drag database tables and/or fields onto
your application forms. When you drop a database object onto your form,
Visual Cafe creates the associated components and populates the
component’s property list with information collected from the database.

You can also use the database wizards, which step you through the
process, to build dbAWARE applications.

The dbAWARE wizards

The Visual Cafe Database Development Environment wizards make it easy
to quickly get to the heart of your dbAWARE application development.

You can use the dbAWARE Project Wizard to create a dbAWARE project. It
provides screens where you are asked to make the choices that define your
project. Using the wizard you define the data source, choose the table,
specify the columns to use and add any new components and interactions.
When you finish, the wizard displays the form you specified in the Visual
Cafe form editor.

Database
Table

Column in table
12-11

Chapter 12: Developing a dbAWARE project
After you create your form, you can add more tables to it by using the Add
Table Wizard.

Once you use the wizards to define the relationship between your data
source and components on your applet or application, Visual Cafe
automatically updates dbAWARE components in your form to match any
changes in the data source.

Database manipulation functions

Visual Cafe provides a set of functions you can use to navigate and
manipulate your database. Some of these are provided in buttons which
you can add to forms. There are also several database methods which do
not have a visible representation.

Visual Cafe includes the following database functionality:
■ Next record: displays the contents of the next database record
■ Previous record: displays the contents of the previous database record
■ New record: creates a new record in the database
■ First record: displays the first record
■ Delete record: deletes the current record
■ Undo record: undoes change made to a database record
■ Save entire record set (save multiview): saves a set of records
■ Rewind result set: go back to the beginning of the result sets
■ Restart entire record set (restart multiview): starts over at the beginning

of a set of records
■ Goto record: goes to the record specified by an integer
■ Get record state: reports the state (modified, unchanged, deleted, new)

of the current record

Creating a dbAWARE project
When you are ready to develop your dbAWARE project, there are several
steps you must follow before the application or applet will be able to read
and store data.
■ Start dbANYWHERE. See “Starting dbANYWHERE” on page 12-13 for

details.
12-12

Creating a dbAWARE project
Note: There are several configurations which have to do with the
location of your dbAWARE project, dbANYWHERE, and your
database. Before you start the dbANYWHERE application, it must
be configured to suit your needs. The configuration options are
explained in Chapter 13, “Using dbANYWHERE.”

■ Create your database by using the tools shipped with Visual Cafe.
■ A brief overview of how to do this is provided in “Creating the

database for your project” on page 12-14.
■ Identify the database you want to use for the project’s data source by

using the ODBC administrator tool. This tool is installed along with
Visual Cafe and appears on the Windows Start menu.

■ See “Defining your data source” on page 12-15 for more information.
■ Create the dbAWARE project using the dbAWARE Project Wizard.
■ See “Using the dbAWARE project wizard” on page 12-19 for details.
■ Use the Add Table Wizard to add new tables from your database.
■ See “Connecting to a server using dbNAVIGATOR” on page 12-30 for

details.

Starting dbANYWHERE

Before your application or applet can communicate with your database,
you must make sure that dbANYWHERE is running. The dbANYWHERE
software, which is provided with Visual Cafe, is responsible for translating
the Java database calls, which are made by your applet or application, into
the appropriate database driver calls. It then sends these database requests
on to your database.

If you have dbANYWHERE installed on your local machine, you can start it
by using the Windows Start menu. If dbANYWHERE is installed as a
Windows NT service you must start it from a command line.

To start dbANYWHERE from the Windows 95 platform:

From the Start menu, choose Programs > Symantec dbANYWHERE
Server > Symantec dbANYWHERE Server.

To start dbANYWHERE from a command line:

1 Execute the a statement on your command line in the form:

dbaw [- options]
12-13

Chapter 12: Developing a dbAWARE project
For example, the following command starts dbANYWHERE and
specifies the default port: dbaw -port 8889

The options are:

Note: To see the dbANYWHERE command line options on the
screen, invoke dbANYWHERE with a question mark:

dbaw -?

2 Determine the URL for connecting to the dbANYWHERE Server.

To see the dbANYWHERE Server’s IP address and port number, look at
the dbANYWHERE Server title bar.

Creating the database for your project

Before you can develop a dbAWARE project you must have a database in
place for your project data. If you need to create a new database for your
project, you can use:
■ Proprietary database tools for the SQL Sybase, Informix, and Oracle

databases.
■ The Sybase SQL Anywhere 5.0 set of database creation tools, which are

bundled with Visual Cafe.

The following optional procedure describes how to use the SQL Central
tools to create a new database.

To create a database using the Create Database wizard:

1 From the Start menu, choose Programs > Sybase SQL Anywhere 5.0 >
SQL Central.

A Navigator window opens.

2 Open the Database Utilities folder.

A list of wizards displays.

3 Double-click on Create Database.

Options Description

ipaddress a.b.c.d Specifies the IP Address for dbANYWHERE to
use if the system has more than one.

port number Listen on port #X instead of the default (8889)
12-14

Creating a dbAWARE project
A wizard screen opens, which is similar to this:

4 Click Browse to set up a location for your new database.

5 Click Next.

Follow the instructions in the wizard on each screen until your
database is finished.

For more information, see the extensive set of online documentation
provided with Sybase SQL Anywhere 5.0. In particular, the online chapter
Working with Database Objects, presents information on creating new
databases.

Defining your data source

A data source is what identifies a database to an ODBC-compliant database
application. ODBC stands for Open Database Connectivity. It is the
standard interface to database applications in the Windows 95 and
Windows NT environments.

When you set a data source for your project, you are really packaging the
information which enables your application to connect to the database you
want to access. The data source includes details which are needed for
connection, like the name of the database, its server, and its network
location.

Before you can use your database in a Visual Cafe project, you must create
its data source name. There are two ways to create a data source name for
a Visual Cafe dbAWARE project.
12-15

Chapter 12: Developing a dbAWARE project
If your database uses one of the “flat file” database systems such as, MS
Access, SQL Anywhere, Watcom, or ODBC XBase as its driver, you must
use the ODBC Administrator program to create its data source. These are
the kinds of small databases you might use for a dbANYWHERE server
running on your local machine.

If the database type uses any of the native dbANYWHERE drivers you must
use the dbANYWHERE DataSource tool to create the data source. The
native drivers for dbANYWHERE include: SQL Server, Sybase, Informix,
and Oracle. These databases are more appropriate for a large system which
is accessed across a network.

To create a data source using the dbANYWHERE DataSources tool:

1 If you do not have an existing database, see the previous section for
information on creating a new database.

2 From the Start menu, choose Programs > Symantec dbANYWHERE
Workgroup Server > Configure DataSources.

This runs the dsntool.bat file. For information about where this file is
on your disk, see the readme file.

3 Choose the appropriate database driver for your database.

The necessary fields for that driver display.

4 Fill in the fields.

For more information on the values needed for each field, see
Chapter 13, “Using dbANYWHERE.”.

To add a data source using the ODBC Administrator:

1 From the Start menu, choose Programs > Sybase SQL Anywhere 5.0 >
ODBC Administrator.
12-16

Creating a dbAWARE project
The Data Sources dialog box displays. The following illustration shows
the registered Data Sources and drivers on your computer.

2 Click Add to create a new data source.

The Create New Data Source dialog box appears.

3 Select the appropriate database driver (for your type of database) from
the list of Installed ODBC Drivers.

For example, if you have a Sybase database as your data source, select
the Sybase SQL Anywhere 5.0 database driver.

4 Click Finish.
12-17

Chapter 12: Developing a dbAWARE project
The appropriate ODBC Configuration dialog box appears. The SQL
Anywhere ODBC Configuration dialog box is used in this example.

5 Click the Browse button to locate your database.

When you locate your database and click open, this fills in the
Database File pathname, the Database Name field, and the Data Source
Name.

Note: The file path is valid only for these “flat file” database types.
Do not try to put a path into the dbANYWHERE DataSources tool.
If you do, your data source will not work.

If your database is on your local machine, and your server software is
running on your local machine, you do not need to change any other
settings.

The User ID and Password are optional.

The ODBC Configuration settings are thoroughly documented in the
Help file that comes with the tool. To see complete descriptions of the
values needed in each field, Click the Help button.
12-18

Creating a dbAWARE project
Using the dbAWARE project wizard

The easiest way to create a database project is to use the dbAWARE Project
wizard. It includes a series of interactions that allows you to identify
database tables, variables in the tables, and the actions that are to be
performed on that data. A button corresponds to each action and a field
and label to each column in the table. The applet or application is
constructed and displayed in the Form Designer.

To start the Project wizard:

1 Choose New Project from the File menu.

A window opens and displays several wizard icons.

2 Double-click on the dbAWARE Project Wizard to open it.

The initial dbAWARE Project Wizard screen opens.

3 Click Next. The Project Type wizard screen opens.

12-19

Chapter 12: Developing a dbAWARE project
Setting up your project as an applet or application

The code used to generate a Java applet or application is added to your
project when you set the project type using this wizard page.

To set your project as an application or applet:

1 Choose applet or application from the Project Type drop-down menu.

The Project Type wizard screen and the drop-down menu are shown
in the following illustration.

2 Click Next.

The dbANYWHERE server screen displays.
12-20

Creating a dbAWARE project
Selecting the dbANYWHERE server for your project

You use this wizard page to identify your database server software. It also
enables you to connect to the database you are going to use in your
project.

To identify your server:

1 Type a name for your server or choose a name from the
dbANYWHERE Server Name drop-down list.

This list contains all the named dbANYWHERE servers to which you
are connected. Since you don’t need to name your server to connect to
it, your server may not have a name. In this case, you should type in a
new name for it.

2 Leave the Host Name or IP Address and the Port Number fields as they
are.

3 Click Next.

The Data Source wizard screen displays.
12-21

Chapter 12: Developing a dbAWARE project
Identifying the data source

The Data Source wizard screen creates the data source for your project. It
contains the information for connecting your applet or application to the
database and server specified by it.

To identify the data source to use in your project:

1 Choose a name from the Data Source Name drop-down list.

The list displays the registered data sources for the database server you
selected previously.

2 Log on to your server, if necessary.

If you still need to connect to your database server, the wizard screen
opens the Logon dialog box that lets you logon to the database.

3 Click Next.

If a user name and password are assigned for this data source, the User
Authentication dialog box for these items displays, as shown in the
following illustration.
12-22

Creating a dbAWARE project
4 Fill in the User name and Password fields. For an SQL Anywhere
database the default User name is dba (for database administrator) and
the corresponding password is sql.

If the database has these values defined, you must do this before you
can proceed with the dbAWARE Wizard.

5 If the database was not created by you, click on the checkbox for
“Only show tables owned by this user” to deselect it. Otherwise, you
are not going to be allowed to see any columns in the data source you
selected.

Selecting tables

Databases can be thought of as a collection of tables. The tables in the
database you selected earlier are displayed on this wizard screen. To make
a table and its data available to your application or applet select the
table(s) from the list and then click Next.

Choosing database columns for your application to use

Typically, each column of a database contains a single kind of information.
For instance, once column of a customer database might contain customer
identification numbers while another column contains a name, and yet
another contains purchase information.
12-23

Chapter 12: Developing a dbAWARE project
The Database Columns wizard page lets you choose the database columns
that you want to access in your applet or application. The list displays
columns from the previously selected database table.

To select a database column:

1 Click the column’s check box.

2 Click Next.

The columns is selected and the Components and Labels wizard screen
is displayed.

Selecting the components to apply to your table

The Components and Labels wizard page lets you select a component and
specify a label for each database column. At runtime, the applet or
application displays each column’s data in the component assigned to it
and displays the label for the component. The wizard displays a default
component and label for each column.

Note: You can change the defaults. See “Setting the Database Environment
Options” on page 12-2.
12-24

Creating a dbAWARE project
To change a column type:

1 Click on the component in the Component field.

A drop-down menu list displays.

2 Choose a component from the drop-down list.

The component name displays in the Component list.

To change a label:

1 Click on the text in the Label column.

2 Enter the new text.

3 If you don’t want the component to have a label, click on the text for
the label and delete it.

Tip: You can change the component’s label after it is built by
modifying the component’s Text property.

4 Click Next.

The Actions Wizard screen opens.

Adding database function buttons to a form

The Actions wizard screen asks you to select the database functionality that
your applet or application will provide. At runtime, the form displays a
button for each action. The choices provided are listed for you in
“Database manipulation functions” on page 12-12.

You can also create an action button outside of the wizard, by adding a
button component to the form. With the button component selected,
12-25

Chapter 12: Developing a dbAWARE project
choose the Add Interaction option from the right-mouse drop-down menu.
Use the Interaction Wizard to specify the appropriate action for the button.

To select database buttons for your form:

1 Click the checkbox for each action you want enabled on the form.

If you want to change the text label of any button, click on the text in
the Text column of the button you want to change and enter the text
for the button.

2 Click Next.

The Finish Wizard screen displays.

Tip: You can use the Property List to change properties of an
action button after it is generated by the wizard.
12-26

Creating a dbAWARE project
Reviewing your project settings

The Finish wizard screen opens the choices you made while using the
wizard to set up your applet or application.

If you need to change a selection, click the Back button to go back to the
wizard page where you made that selection.

Click Finish when you’re done reviewing your work. When you do this,
the Form you specified displays in the Visual Cafe Form Designer.
12-27

Chapter 12: Developing a dbAWARE project
Using the Add Table wizard

You will probably need to assign more than one table to a project. After
you have a project open, you use the Add Table wizard to help you add
new tables to your project. And, when your project already has a
RelationView, you can use the Add Table wizard to create a master/detail
relationship.

To add a new table using the Add Table wizard:

1 From the Insert menu, choose Add Table Wizard.

The dbAWARE Project wizard displays.

2 From the dbANYWHERE Server drop-down menu, select the
dbANYWHERE server you have running.

3 From the Data Source Name drop-down menu, select the SQL
Anywhere 5.0 Sample

4 Click Next.

5 Choose a Database Table from the list displayed by selecting
DBA.customer.

6 Click Next.

7 From the Database Columns list, click on the phone checkbox to
deselect it.

8 Click Next.

9 Leave the default values in the Component and Label columns of the
Choose Components and Labels dialog.

10 Click Next.

11 Select the Previous and Next actions in the “Choose Database
Operations” dialog box.

12 Click Next.
12-28

Using dbNAVIGATOR in form development
The following form displays in the Form Designer.

13 From the Project menu, choose Execute.

The applet starts up and runs.

14 Click either the Prev or Next buttons to see the database records.

Using dbNAVIGATOR in form development
The dbNAVIGATOR lets you access dbANYWHERE Servers, and the
databases that are managed by the servers. When you connect to a
dbANYWHERE Server, dbNAVIGATOR displays a list of servers and Data
Sources that are currently connected.

Using the dbNAVIGATOR window, you can quickly perform many
database functions by dragging specific database fields from the
dbNAVIGATOR window and dropping them onto your form in the Form
Designer.

Visual Cafe then creates the appropriate dbAWARE component, according
to the data type of the field. (You can change these default settings. See
“Setting the Database Environment Options” on page 12-2, for more
information.) Visual Cafe also generates the component properties by
basing the settings on the database field’s design. In addition, Visual Cafe
generates the Java code to bind the component to the database field.

There are many database functions you can carry out by using the
dbNAVIGATOR window. Some of the tasks are:
■ Connecting to a dbANYWHERE Server
12-29

Chapter 12: Developing a dbAWARE project
■ Connecting to a data source
■ Adding a RelationView to a form
■ Disconnecting from a data source
■ Updating the dbNAVIGATOR window

Connecting to a server using dbNAVIGATOR

In order to access a data source, you must first connect to a dbANYWHERE
Server that has the data source registration.

To connect to the dbANYWHERE server using dbNAVIGATOR:

1 Choose Window > dbNAVIGATOR.

The dbNAVIGATOR window displays.

2 If you display dbNAVIGATOR and it is empty, Visual Cafe opens the
dbANYWHERE Server dialog box. See “Selecting the dbANYWHERE
server for your project” on page 12-21 for information about these
settings.

3 Use the dbANYWHERE Server dialog box to connect to a
dbANYWHERE Server. Make sure that dbANYWHERE is running or this
won’t work.

Connecting to a database

Once you are connected to a server using dbNAVIGATOR, you can see all
the data sources registered with that server.

To connect to a database:

1 Install the Sybase SQL Anywhere 5.0 product, if it is not already
installed, so that you have access to the sample databases.

2 Start and connect to your dbANYWHERE server.

3 Click the plus sign next to the SQL Anywhere 5.0 Sample in the
dbNAVIGATOR window to see its object list.

The User Authentication dialog box displays.

4 Enter the default User name and Password values, dba and sql,
respectively.

5 Click OK.

The tables included in the SQL Anywhere 5.0 Sample displays in an
indented list under the database name.
12-30

Using dbNAVIGATOR in form development
Adding a dbAWARE text field to a form

You can use the dbNAVIGATOR window to add a text field which reflects
the contents of a database column to a pre-existing form.

To add a TextField, which is associated with a database column, to a form:

1 In dbNAVIGATOR, expand the desired server’s data source object list.

2 Click the plus sign in the dbNAVIGATOR window to see the object list
of the data source.

3 Expand the object list for the table that contains the desired column.

This picture shows the expanded table object listing for the SQL
Anywhere 5.0 Sample database.

4 Drag the appropriate column item to the Form Designer.

Visual Cafe Pro adds a TextField and Label component to the form. The
label component uses the column name for the Text property. If the field is
from a table where the necessary dbAWARE components (like the Session,
ConnectionInfo, and RelationView components) are not yet created, then
those supporting components are created for you.
12-31

Chapter 12: Developing a dbAWARE project
5 Position and size the Text field and label as necessary.

Refreshing dbNAVIGATOR

Refreshing dbNAVIGATOR updates dbNAVIGATOR’s display for a data
source's tables and columns. Refreshing dbNAVIGATOR is useful for
multiple concurrent users.

1 From the Window menu, choose dbNAVIGATOR.

2 Select a data source by clicking on a DataSource item.

3 Right-click to display the dbNAVIGATOR contextual pop-up menu.

4 Choose Refresh from the menu.

The screen updates itself and redisplays.

Adding a database grid component

The easiest way to add a grid component to a form is from the
dbNAVIGATOR window. You can add your grid component, in a few steps,
by using drag-and-drop functionality.

To use dbNAVIGATOR to add a grid component:

1 Drag a table name from the dbNAVIGATOR window onto your form.

When you do this, Visual Cafe automatically creates all the other
components, which are needed to define the database connection,
such as the RelationView, Session, and ConnectionInfo components.

The illustration below is a screen shot of the dbNAVIGATOR window
which is showing the columns in the Visual Cafe Tutorial’s
12-32

Using dbNAVIGATOR in form development
DBA.registation table. When the columns display in a Grid, they
appear in the same order you see them in the dbNAVIGATOR window.

2 Select the Grid component from the Component Palette, drag it to the
Form Designer, and drop it on the Form Designer.

The Grid display is empty. You do not see the actual data until
runtime.

3 Size the Grid component, as needed.

If query columns do not fit within the Grid component, a scroll slider
is provided.

4 Adjust the column widths by positioning the cursor on the column
heading until a double-edge arrow displays. Then, click and drag the
column border line left or right.

Note: Column heading text can be customized in code only.
12-33

Chapter 12: Developing a dbAWARE project
5 Set the Grid component’s RelationView property to the name of the
RelationView component that was created automatically in step 1. The
RelationView property is an element of the Binding property.

6 Run the form by choosing Execute from the Project menu.

The following illustration shows the sample Grid at runtime. Notice the
placement of the Grid buttons. The Grid component uses the database
column names as the Grid column headings.

Disconnecting from a database

When you finish your session you should disconnect from the database.

To disconnect from a data source:

1 Choose Window > dbNAVIGATOR.

2 Choose a data source by clicking on a DataSource item.

3 Right-click to display the dbNAVIGATOR pop-up menu.

4 Choose Disconnect.

Changing grid attributes
Once you have a grid in place on your form, you may decide to change its
visual attributes. To do this you must modify the source code. The grid
attributes you can change include:
■ Foreground and background cell colors
■ Cell fonts
12-34

Changing grid attributes
■ Protection status
■ Column attributes

The following sections give examples of how to modify the grid attributes.

Important: You must place any custom source code after the
INIT_CONTROLS code block.

Changing foreground and background cell colors

The Property List does not provide a property which controls the
foreground and background colors of Grid cells. You must specify these
attributes in code.

Below is a code sample that changes the cell background and foreground
colors. The setCellBgColor and setCellFgColor methods take as
arguments a row number, a column number, and a new color.

Note: Cell row and cell column numbers start with 1 (not 0).

grid1.setCellBgColor(1, 1, Color.blue);

grid1.setCellFgColor(1, 1, Color.white);

You can also change the color of an entire row or column of cells. The
arguments for the methods that do this consist of a row (or column)
number and a color.

grid1.setColBgColor(1, Color.blue);

grid1.setColFgColor(1, Color.white);

grid1.setRowBgColor(1, Color.red);

grid1.setRowFgColor(1, Color.white);

Changing cell fonts

You may want to change the font of a cell or range of cells for emphasis.
Below are some code snippets that illustrate how to change cell, column
and row fonts:

grid1.setCelllFont(2,2,new Font(“Helvetica”,Font.PLAIN,14));

grid1.setColFont(1, new Font (“TimesRoman”,Font.ITALIC, 18);

grid1.setRowFont(1, new Font (“Courier”, Font.BOLD, 16)
12-35

Chapter 12: Developing a dbAWARE project
The arguments are the column number, a color as defined in the
java.awt.Color class, and a font size.

Changing Grid column attributes

You can change attributes of Grid columns and protect sections of the grid.
These attributes, which must also be changed in the code, include:
■ Protecting sections of the grid
■ Heading names
■ Column alignments
■ Heading colors and fonts

Protecting grid sections

You can protect cells, so that the user cannot modify the data, by
enhancing the component's Java code. Like Grid cell colors, you can
protect specific cells, a whole row of cells, or a whole column.

 Below are some examples:

grid1.setCellEditable(1, 1, false);

grid1.setColEditable(2, false);

grid1.setRowEditable(2, false);

In the above syntax, the first argument is the column number and the
second argument is a Boolean. The false Boolean value indicates a read-
only row, column, or cell and the true value indicates a read-write row,
column, or cell.

Changing Column Headings

You can change column headings by adding custom code, as follows:

grid1.setHeading (“Last Name”, 1, 15);

grid1.setHeading (“First Name”, 2, 15);

The third setHeading argument specifies the width of the column in
average character widths.
12-36

Changing grid attributes
Changing Column Alignment

You can also modify column alignment. The method arguments are the
column number and the alignment type. The alignment can be specified by
static final int values attached to the Grid class:

grid1.setColumnAlignment (1, grid1.LEFT);

grid1.setColumnAlignment (2, grid1.CENTER);

grid1.setColumnAlignment (3, grid1.RIGHT);

Changing Column Heading Colors And Font

You can modify column heading and font attributes. The setHeadingColor
method changes the foreground and background colors of a column
heading. The setHeadingFont method changes the font of a column
heading:

grid1.setHeadingColors (1, Color.black, Color.white);

grid1.setHeadingFont (new Font(“TimesRoman”, Font.BOLD, 18), 1);

Defining automatic Grid row numbering

Automatic row numbering can be turned on or off. When activated, the
starting row number can be set by using the setupAutonumbering method,
for example,

grid1.setupAutonumbering (1); //Begins row numbering at 1.

grid1.setupAutonumbering (5); // Begins row numbering at 4.

grid1.setupAutonumbering (0); //Turns off auto-row numbering.

Defining automatic Grid redraw

Each time a grid component is updated, it is automatically redrawn. If you
are going to make several changes to your grid (column headings, cell
color changes, and so forth) it is a good idea to turn off the automatic
redraw capability. Once you have made all your changes, you can turn it
back on again by using the following code snippet:

grid1.setAutoRedraw (false); // Turns off auto-redraw

// Make changes to the grid here

grid1.setAutoRedraw (true); // Turns on auto-redraw

Modifying the Grid toolbar

You can add additional functionality to a Grid toolbar by
■ Creating a customized Grid event handler with the added functionality
12-37

Chapter 12: Developing a dbAWARE project
■ Informing the Grid about the new event handler

Each grid component has a DefaultTvEventHandler object that provides
the standard functionality of the Grid: Insert, Go To, Undo, Restart, Delete,
Undelete, and Save. Additional functions are made through a custom
EventHandler object that extends from the DefaultTvEventHandler .
12-38

C H A P T E R 13
Using dbANYWHERE

Java forms communicate with a data source through code calls to server
software which generates the code for communicating with a database.
The Symantec Visual Cafe Database Development Edition includes
database deployment software (also known as middleware) called
dbANYWHERE.

In this chapter you learn:
■ About dbANYWHERE
■ How to use the dbANYWHERE components

About dbANYWHERE
This section discusses how dbANYWHERE fits into your dbAWARE Java
applet or application development scheme.

What is dbANYWHERE?

You use the dbANYWHERE Server software to drive your database
connection. It comes with special data source connectivity components
and wizards to help you configure the server connection. When you use
the Visual Cafe Database Development Edition wizards and components,
Visual Cafe automatically generates Java code that includes calls to the
dbANYWHERE API.

The dbANYWHERE workgroup server database-deployment software
manages transactions between a client’s Java applet or application and one
or more databases. Using dbANYWHERE, a Java applet or application from
13-1

Chapter 13: Using dbANYWHERE
a client Web browser transparently connects to the dbANYWHERE server,
and the server in turn connects to the target databases.

The dbANYWHERE server then translates the information to the specific
driver needed for you database to be able to interpret the calls from your
applet or application. Conceptually dbANYWHERE sits between your
applet/application and the database. It handles the necessary database
drivers and as such, can be viewed as a database middleware server.

Since dbANYWHERE provides the database configuration data and other
database-specific information, the Java applet or application which is the
database client can be database-independent. When you use
dbANYWHERE, the necessary database drivers are handled by
dbANYWHERE. This means that you don’t need to install any database
libraries with the client application or applet.

How the dbANYWHERE architecture works
The dbANYWHERE middleware software supports a 3-tier architecture for
database access. This layered architecture refers to the database client, the
dbANYWHERE server, and the database server. These tiers can exist
together on one computer, or may be set up so that each one is on a
separate machine. The benefits of having specific locations of each logical
part of the server configuration is described in “Configuring
dbANYWHERE” on page 13-3.

The three layers or tiers are:
■ First tier: the client. A dbANYWHERE client consists simply of a TCP/IP

network configuration. In order to run a Java applet and to download
classes dynamically, a client also requires a standard Internet Web
browser.

■ Second tier: the dbANYWHERE server. This tier handles the database
APIs and the ODBC configuration. The database client software and
network software (TCP/IP) must also exist on this machine.

■ Third tier: the database server(s). The Network software (TCP/IP) must
also exist on this machine.
13-2

Configuring dbANYWHERE
The following diagram illustrates the 3-tier architecture.

Configuring dbANYWHERE
You can set up the three tiers on different computers, or combine any or all
of the tiers on a single computer. For example, during development you
may want to place all 3 tiers on one machine. However, when deploying
large applications you will typically dedicate one or more machines to each
tier. The dbANYWHERE runtime configuration is also tied to the number of
users and the servers you support.

Java-capable W eb brow ser

JD BC classes
and dbAN YW H ERE

classesdbANYW HER E m iddleware

Database clientlibrary
(provided by database

vendors)

Java classes

T ier 1:
C lient

(Any platform)

T ier 2:
dbA N Y W H E R E Server
(W indow s NT w orkstation orserver

orW indows 95 P C)

T ier 3:
D atabase servers
(Any supported platform)

O DBC driverm anager
(provided bya

3rd party vendor)

dbANYW HERE database drivers

Database server
(such asO racle)

Database server
(such as Sybase)

Database server
(such asM ircosoft

SQ L Server)

Dynam ically
dow nloaded

S ocket

D atabase clientlibrary
(provided by database

vendors)

D atabase clientlibrary
(provided by database

vendors)

Localdatabase
files(such
asdbaseV
orAccess)

D atabase clientlibrary
(provided by database

vendors)

Databaseserver
(such asW atcom)

Tier 1: Client

Tier 2: dbANYWHERE server

Tier 3: Database servers
13-3

Chapter 13: Using dbANYWHERE
This section describes common ways to configure the dbANYWHERE tiers:
■ One machine for local databases
■ Two machines for remote databases
■ Two machines for remote and local databases
■ Three machines for remote databases and remote dbANYWHERE

server.

One machine for local databases

For local databases during development, you may want to use a single
machine in which the client, dbANYWHERE, and the databases reside on
one computer.

Two machine configuration for remote databases

For remote databases, you can use a two machine configuration in which
the client and dbANYWHERE are on one machine and the databases are
on other machines.

Client

dbANYWHERE

Local databases

Client

dbANYWHERE

Remote databases
13-4

Configuring dbANYWHERE
Two machine configuration for local and remote databases

For a combination of local and remote databases, you can use a two
machine configuration in which the client, dbANYWHERE and the local
databases reside on one machine, and the remote database reside on other
machines.

Three machine configuration

You can place each tier on a separate machine. In this configuration, the
client, dbANYWHERE, and the databases reside on separate machines.
However, you are not limited to three machines. Additional databases can
reside on other machines.

Client

dbANYWHERE

Local databases

Remote databases

Client

dbANYWHERE

Remote databases
13-5

Chapter 13: Using dbANYWHERE
Using the dbANYWHERE packages
Visual Cafe Database Development Edition provides two Java packages
which the Java client application or applet uses to “talk” to the
dbANYWHERE middleware software. They are the symjava (JDBC)
package and the dbaw (dbANYWHERE) package. The symjava package
provides the standard Java classes which define the JDBC API. The dbaw
(dbANYWHERE) package provides the classes that implement the JDBC
API.

You can dynamically download the packages to the client or install the
packages on the client to avoid the administration problems of installing
the packages on each client. The client’s Web browser handles this
automatically by downloading the necessary classes as they are needed by
the Java applet.

The following table lists the client programs and which package they use:

Note: The sql.zip file which shipped with prior versions of Visual Cafe are
no longer included. These files are now part of JDK 1.1 and are included in
the corresponding class file.

The following is a list of the contents of each .zip file:
■ dbaw.zip : Set of dbANYWHERE classes. These classes implement the

JDBC classes that are only defined but not implemented in Sun’s
package.

■ dbaw.exe : The dbANYWHERE executable.
■ dbawservice.exe : The dbANYWHERE Service executable (NT

only)
■ dbawut.dll , dbawdm.dll , dbawkrnl.dll , dbawserv.dll ,

dbawnbr.dll , dbawprops.dll , dbawlicense.dll ,
dbawdt.dll : Support DLLs.

For client programs using: Include:

JDBC API dbaw.zip

dbANYWHERE API dbaw.zip
dbaw_awt.zip
13-6

Using the dbANYWHERE packages
■ ddaccess.dll , ddodbc.dll , ddsybany.dll , ddsybnt.dll ,
ddsybwin.dll , ddorant.dll , ddorawin.dll , ddmssql.dll ,
ddinfmx.dll , ddoracle.dll : Database driver DLLs.

■ dbawlic.txt , ddinfmx.sup , ddmssql.sup , ddsybase.sup ,
dbaw_out.zip : Additional database files.

■ dbawdrvr.ini : Configuration file.

Using the dbANYWHERE packages for development

Once you determine which dbANYWHERE packages you require for your
applet or application you need to set them up on your development
machine.

To set up the packages on your development system:

1 Copy the .zip files to the development machine.

2 Modify your CLASSPATH environment or application variable to point
to the directory that contains the .zip files.

3 Modify the program’s CLASSPATH statement in sc.ini . For example,
if you put the .zip files in a directory called zipFiles :

CLASSPATH=c:\zipFiles\dbaw.zip;c:\zipFiles\dbaw_awt.zip;

4 Add the pathnames for the dbANYWHERE files sql.zip and
dbaw.zip files to CLASSPATH in c:\Visual Cafe\bin\sc.ini .
This is important so that the Visual Cafe wizards will work. For
example:

CLASSPATH=...;c:\dbaw\sql.zip;c:\dbaw\dbaw.zip

Note: Visual Cafe Database Development Edition reads sc.ini only
during launch. If you edit sc.ini while Visual Cafe Database
Development Edition is running, restart the program for the changes to
take effect.

Setting up the dbANYWHERE packages for a deployed
application

We recommend providing the dbANYWHERE packages as unzipped files
and setting up the files for automatic downloading. When you use this
configuration you don’t need to install packages onto the client. In
addition, your applet or application downloads only the required classes.
13-7

Chapter 13: Using dbANYWHERE
To set up the dbANYWHERE packages as unzipped files for automatic
downloading:

1 Copy the files to the directory of your applet or application. For
example, if your applet is called dbapplet.class and is in
c:\client\dbapplet , you would have the following files:

c:\client\dbapplet\dbapplet.class

c:\client\dbapplet\dbaw.zip

c:\client\dbapplet\dbaw_awt.zip

2 Unzip the files and delete the .zip files. Retain the complete directory
structure for the unzipped files.

For example, if your applet is called dbapplet.class and is in
c:\client\dbapplet , you would have the following files:

c:\client\dbapplet\dbapplet.class

c:\client\dbapplet\symantec\itools\db\jdbc*.class

c:\client\dbapplet\symantec\itools\db\net*.class

c:\client\dbapplet\symantec\itools\db\pro*.class

c:\client\dbapplet\symantec\itools\awt\image*.class

c:\client\dbapplet\symantec\itools\db\awt*.class

Configuring dbANYWHERE as a Windows NT
service (Windows NT only)

On Windows NT, you can run dbANYWHERE as a console or as a service.
On Windows 95, you must run dbANYWHERE as a console. During setup,
dbANYWHERE is configured to run in console mode.

There are several advantages to running dbANYWHERE as a service:
■ You can configure dbANYWHERE to start automatically when the

system boots.
■ The System Event Log will track key actions.
■ The Windows NT Performance Monitor can be used to monitor the

dbANYWHERE Server.
■ You can start and stop the dbANYWHERE service from remote

machines.
13-8

Configuring dbANYWHERE as a Windows NT service (Windows NT only)
To install the dbANYWHERE Windows NT service:

1 Start the dbANYWHERE Service Manager. To do this, double-click the
icon in the dbANYWHERE Program group or type “dbawmgr” from
the command line in the directory where the dbawmgr.exe file exists.

2 Go to the Options menu and select Install as Service.

3 Click OK.

4 The dbANYWHERE service is now installed.

To configure the dbANYWHERE Windows NT service:

1 If not already running, start the dbANYWHERE Service Manager.

2 From the Options menu, choose Properties.

3 If desired, select Autostart on System Boot. Otherwise, you must start
the service manually.

4 Set the log-on values. For an ODBC-enabled database select “This
account” and enter your Windows NT user account number and
password. If you have selected automatic mode, Windows NT will
automatically log in for you when the system boots.

5 Change other settings as needed. These are the same as the command
line options. For example, if you want dbANYWHERE to use port
7864, select the Network tab and change the port number to 7864.
Under the Logging tab, be sure to leave “Log to Event Log” enabled so
that you can diagnose any startup problems.

6 Restart the server for the changes to take effect.

Running the service

Click the START button. Within a few seconds, the status should change to
Running. At this point, you can try to connect from a client application.

If status changes briefly to “Start Pending”, and then to “Stopped”, check
the Windows NT Event Viewer for problems.

Viewing messages

When running as a service, dbANYWHERE sends informational, warning,
and error messages to the Windows NT Event Log.
13-9

Chapter 13: Using dbANYWHERE
To view these messages:

1 Start the Event Viewer. To do this, double-click Event Viewer in the
Administrative Tools group or choose Options/Launch Event View in
the dbANYWHERE Service Manager.

2 Choose the application log. When you do this, Event Viewer lists all
the messages in the application log.

3 To get more information about a specific message, double-click on the
message. When you do this, Event Viewer displays a dialog box that
provides detailed information about the message.

Connecting to a data sources
You must set a data source for a database before it can be used by an
application or applet. The data source contains the information which is
necessary to locate the database. Once you have set a data source for your
database you can set your application or applet to connect to the different
kinds of databases, as described in the following sections.

Note: The URLs in this section are for JDBC and begin with:
jdbc:dbaw:// . The URL for the corresponding Visual Cafe Database
Development Edition is the same except that the “jdbc: ” is not included.
The syntax is dbaw://.

Connecting to a Sybase SQL Anywhere and Watcom data
source

This procedure describes how to connect to Sybase SQL Anywhere by
using JDBC and the Visual Cafe Database Development Edition APIs as a
direct ODBC Data Source using the ODBC driver that dbANYWHERE
provides. To use SQL based ODBC or Xbase ODBC and a third-party
ODBC driver, see:
■ “Connecting to an ODBC SQL-based data source by means of JDBC”

on page 13-12
■ “Connecting to an ODBC Xbase data source by means of JDBC” on

page 13-13

To connect to Sybase SQL Anywhere by means of JDBC:

1 Make sure you have access to Sybase SQL Anywhere or Watcom.
13-10

Connecting to a data sources
2 Make sure you have access to the Sybase SQL Anywhere or Watcom
ODBC32 driver.

3 Use the Windows Control Panel ODBC32 Administrator to create and
install the ODBC Data Source to the desired database on the
dbANYWHERE Server machine.

4 Set the URL, as shown in the following examples.

The Server and Data Source parameters in the Data Source URL need
to be the same as the ODBC Data Source name defined on the
dbANYWHERE Server machine. For example:

To connect to a Sybase SQL Anywhere database with an ODBC Data
Source named “Tutorial”:

jdbc:dbaw://localhost:8889/Sybase_SQLANY/
Tutorial/Tutorial

To connect to a Sybase SQL Anywhere database with the default
ODBC Data Source named SQL Anywhere 5.0 Sample:

jdbc:dbaw://localhost:8889/Sybase_SQLANY/SQL Anywhere
5.0 Sample/SQL Anywhere 5.0 Sample

To connect to a Watcom 4.0 database with an ODBC Data Source
named Sample:

jdbc:dbaw://localhost:8889/Watcom/Sample/Sample

Connecting to an Informix data source

You can connect to an Informix data source by installing the Informix SQL
Server 32-bit client software.

To connect to an Informix data source:

1 Install the Informix SQL Server 32-bit client software on the
dbANYWHERE Server machine.

2 Set the URL.

Connecting to Microsoft Access data source by means of JDBC

This procedure describes how to connect to Sybase SQL Anywhere by
means of JDBC and Visual Cafe Database Development Edition APIs as a
direct ODBC Data Source using the ODBC driver that dbANYWHERE
provides. To use SQL based ODBC or Xbase ODBC and a third-party
ODBC driver, see:
■ “Connecting to an ODBC SQL-based data source by means of JDBC”

on page 13-12
13-11

Chapter 13: Using dbANYWHERE
■ “Connecting to an ODBC Xbase data source by means of JDBC” on
page 13-13

To connect to Microsoft Access data source by means of JDBC:

1 Make sure you have Microsoft Access and the Microsoft Access
ODBC32 driver.

2 From the Start menu, choose Programs, then Sybase SQL Anywhere
5.0, then ODBC Administrator

3 Create and install an ODBC Data Source for the desired database on
the dbANYWHERE server.

If you need directions, use the online documentation provided with
the product.

4 Set the URL, as shown in the following example.

The Server and data source parameters in the data source URL must be
the same as the ODBC data source name defined on the
dbANYWHERE server. For example, the following URL connects to a
Microsoft Access ODBC data source named NorthWind:

jdbc:dbaw://localhost:8889/MS_Access/NorthWind/NorthWind

Connecting to an ODBC SQL-based data source by means of
JDBC

This procedure describes how to connect to an ODBC SQL-based data
source by means of JDBC and Visual Cafe Data Development Edition APIs
by using a third-party ODBC driver.

To connect to an ODBC SQL-based data source:

1 Install the third-party 32-bit ODBC driver pack on the dbANYWHERE
Server machine.

2 Install an ODBC Data Source on the dbANYWHERE Server machine.
You can use the ODBC32 Administrator to create the ODBC Data
Source.

3 Install client software on the dbANYWHERE Server machine.

4 Set the URL, as shown in the following example.

The Server and Data Source parameters in the Data Source URL must
be the same as the ODBC Data Source name defined on the
dbANYWHERE server. For example, the following URL connects to a
Microsoft SQL Server ODBC Data Source named SQLSrvDSN:

jdbc:dbaw://localhost:8889/ODBC_DSN/SQLSrvDSN/SQLSrvDSN
13-12

Connecting to a data sources
Connecting to an ODBC Xbase data source by means of JDBC

This procedure describes how to connect to an ODBC Xbase Data Source
by means of JDBC and Visual Cafe Database Development Edition APIs
using a third-party ODBC driver.

To connect to an ODBC Xbase Data Source by means of JDBC using a
third-party ODBC driver:

1 Install the third-party 32-bit ODBC driver pack on the dbANYWHERE
Server machine.

2 Install an ODBC Data Source on the dbANYWHERE Server machine.
You can use the ODBC32 Administrator to create the ODBC Data
Source.

3 Install client software on the dbANYWHERE Server machine.

4 Set the URL, as shown in the example following.

The Server and Data Source parameters in the Data Source URL need
to be the same as the ODBC Data Source name defined on the
dbANYWHERE Server machine. For example, the following URL
connects to a dBase ODBC Xbase Data Source named DbaseFile:

jdbc:dbaw://localhost:8889/ODBC_Xbase_DSN/DbaseFile/DbaseFile

Connecting to Microsoft SQL data source by means of JDBC

This procedure describes how to connect to a Microsoft SQL data source
by means of JDBC.

To connect to a Microsoft SQL server:

1 Install the Microsoft SQL Server 32-bit client software on the
dbANYWHERE Server machine.

2 Set the URL, as shown in the following example, by using the driver
name: SQL_Server .

To connect to a Microsoft SQL server, the server parameter in a data source
URL needs to correspond to the name of the SQL Server. For example, to
connect to a Microsoft SQL Server named MySQLServer and a database
named pubs, the Data Source URL server parameter is:

jdbc:dbaw://localhost:8889/SQL_Server/MySQLServer/pubs
13-13

Chapter 13: Using dbANYWHERE
Connecting to Sybase SQL data source by means of JDBC

To connect to a Sybase SQL server, the Server parameter in the data source
URL needs to correspond to the name of the Sybase SQL server defined in
the sql.ini file. You can use the vendor-supplied SQLEDIT tool to
generate or view configuration files.

The Sybase SQL server ships two different sets of Open-Client/NetLibrary
software to connect from Windows 95/NT clients.

To connect to a Sybase SQL server:

1 Depending on your client type, install the appropriate 32-bit client
software on the dbANYWHERE Server machine.

2 Set the URL by using Sybase_NT or Sybase_Win95 as the driver
name.

Use the data driver name that corresponds to your platform software,
as shown in the following examples:

To connect to a Sybase SQL server named “MySybServer” and a
database named “sample” on Windows NT:

jdbc:dbaw://localhost:8889/Sybase_NT/MySybServer/sample

To connect to a Sybase SQL server named “MySybServer: and a
database named “sample” on Windows 95:

jdbc:dbaw://localhost:8889/Sybase_Win95/MySybServer/
sample

Connecting to Oracle data source by means of JDBC

SQLNet is the Oracle client software for connecting to remote databases
from client machines. Oracle Server ships different sets of SQLNet client
software for Windows 95 and Windows NT.

To connect to an Oracle data source:

1 Install the appropriate client software on the dbANYWHERE Server
machine.

Note: dbANYWHERE supports several Oracle protocols. Refer to
the Oracle Server documentation for more information about the
different protocols and compatibility between them.

2 Set the URL according to the following examples.
13-14

Testing a data source connection
The Server parameter in the Data Source URL needs to have the format
and values described for the dbANYWHERE Data Source configuration
file’s server name parameter. For example:

To connect to an Oracle Server database named “ORCL” running at
“oraserver.com” using SQLNET V1:

jdbc:dbaw://localhost:8889/Oracle_7/T:oraserver.com/
ORCL (TCP/IP)

jdbc:dbaw://localhost:8889/Oracle_7/P:oraserver.com/
ORCL (Named Pipes)

jdbc:dbaw://localhost:8889/Oracle_7/X:oraserver.com/
ORCL (SPX/IPX)

jdbc:dbaw://localhost:8889/Oracle_7/B:oraserver.com/
ORCL (NetBIOS)

To connect to an Oracle Server database named “ORCL” using SQLNET
V2 with a service name “ORASERV.WORLD” specified in the file,
tnsnames.ora :

jdbc:dbaw://localhost:8889/Oracle_7/TNS:ORASERV.WORLD/
ORASERV.WORLD

To connect to a Personal Oracle7 database named “ORCL” running on
the dbANYWHERE Server machine:

jdbc:dbaw://localhost:8889/Oracle_7/2:ORCL/ORCL

Testing a data source connection
There are three different ways you can use Visual Cafe to test your data
source to see if it is going to be successful in connecting with the server
and database it specifies.

To test a data source connection using the Test Data Sources command:

1 From the Help menu, choose Test Data Sources.

2 Select a Data Source from the list. The list consists of the Data Sources
in the dbANYWHERE Data Source configuration file.

3 (Optional) Enter a user name and password. If you don’t enter these
values, the test uses the user name and password defined in the DSN
section in the dbANYWHERE data source configuration file.

4 Click Test.

5 After a few moments, the test displays the test results.
13-15

Chapter 13: Using dbANYWHERE
To test a data source’s connection using the DataSource tool:

1 Start the Data Source Tool. See “Using the DataSource tool” on
page 13-16 for more information.

2 Select a Data Source from the Defined Data Sources list.

3 Click Test.

This displays the Test dialog box.

4 Click PRO API Test or JDBC API Test.

To troubleshoot when a test fails:

1 Check the Data Source’s user name and password.

2 Check the Data Source URL.

3 Check the Data Source’s information in the dbANYWHERE Data
Source configuration file. To modify this file, you can use a text editor
or the Data Source Tool.

For more information, see “Testing a data source connection” on page 13-
15.

Using the dbANYWHERE tools
You can use the dbANYWHERE tools to:
■ Manage the dbANYWHERE Windows NT Service, covered in an earlier

section
■ Create and edit data sources
■ View events
■ Monitor server link performance
■ Allow remote administration

Using the DataSource tool

The DataSource tool displays the Data Source names, (if there are any)
which have been saved in the dbANYWHERE Data Source configuration
file.

You can use the Data Source Tool to:
■ Create new data sources
■ Edit existing data sources
13-16

Using the dbANYWHERE tools
■ Test the validity of the data source connection information

To use the DataSource tool, you must have the Java Virtual Machine
installed on your system.

To start the Data Source tool:

From the Start menu, choose Programs, then Symantec dbANYWHERE
Workgroup Server, then Configure DataSources.

This runs the dsntool.bat file. For information about where Setup
installs this file, see the readme file.

Fields

Editing the data source

The DataSource Name tool lets you change an existing data source or add
a new data source. Essentially, when you use this tool you are editing the
dbawdsn.ini file, which is the dbANYWHERE Data Source configuration
file.

To change data source values:

1 The dsntool.bat script must be running.

2 Select a Data Source from the Defined Data Sources list.

Defined Data Sources Data Sources listed in dbawdsn.ini .

Selected Data Source The Data Source Tool displays the
configuration information for the Data
Source that is selected in the “Defined Data
Sources” list.

Name <label> value.

Description <description> value.

Engine Descriptive phrase for the <engine name>
value.

Data Source <Data Source name> value.

Username <user name> value.

Password <password> value.

dbANYWHERE Server URL The dbANYWHERE Server’s URL.
13-17

Chapter 13: Using dbANYWHERE
3 Enter or select a new value for each field you want to change.

4 Click Save.

To add a data source:

1 Click New.

2 Enter or select a value for each field.

To delete a Data Source

1 Select a Data Source from the Defined Data Sources list.

2 Click Delete.

Using the dbANYWHERE Admin tool
The dbANYWHERE Admin tool lets you conveniently check and test your
dbANYWHERE system configuration.

Once you have started the tool, you can perform the following tasks with
dbANYWHERE admin:
■ Connecting to a dbANYWHERE Server machine
■ Checking dbANYWHERE Server machine statistics
■ Checking dbANYWHERE connections
■ Testing a dbANYWHERE server

To start dbANYWHERE Admin tool:

1 Start dbANYWHERE.

2 From the Options menu, choose Properties, then Remote Admin.

The Remote Admin tab displays.

3 Select the Allow Remote Administration checkbox.

4 From the Start menu, choose Programs, then dbANYWHERE Server,
then dbANYWHERE Admin.

Note: You can also start this tool from a command line by running
the dbawadmin.bat file. It is in the dbANYWHERE dbawAdmin
directory.
13-18

Using the dbANYWHERE Admin tool
Connecting to a dbANYWHERE server

You need to connect to a dbANYWHERE server before you can use the
dbANYWHERE Admin tool’s features.

To connect dbANYWHERE Admin to a dbANYWHERE server:

1 Start dbANYWHERE Admin.

2 From the File menu, choose Connect.

The dbANYWHERE Admin displays the Connect dialog box.

3 Enter the IP address and port number of the dbANYWHERE Server
machine to which you want to connect.

4 Click Connect.

To disconnect dbANYWHERE Admin from a dbANYWHERE server:

From the File menu, choose Disconnect.

Checking dbANYWHERE server statistics

The dbANYWHERE Admin tool lets you check dbANYWHERE server
machine statistics, like the dbANYWHERE version, amount of up time, and
number of connections.

To check your server statistics:

1 Start dbANYWHERE Admin.

2 Connect to a dbANYWHERE Server machine.

3 From the View menu, choose Server Stats.

4 Click Refresh.
13-19

Chapter 13: Using dbANYWHERE
Fields

Checking dbANYWHERE connections

The dbANYWHERE Admin tool lets you check the current connections to
dbANYWHERE in terms of IP addresses, time connected, and transmission
information.

To check current connections to your server:

1 Start the dbANYWHERE Admin.

2 Connect to a dbANYWHERE server.

3 From the View menu, choose Connections.

4 Click Refresh.

The format of the information is as follows:

<ID>, <IP address>, <time>, <not used>, <requests>, <bytes
received>, <bytes sent>

Version dbANYWHERE version number

Up time Length of time since dbANYWHERE started

of accepted
connections

Number of successful connections to
dbANYWHERE since dbANYWHERE started

Current # of
connections

Number of current connections to dbANYWHERE
including the connection from dbANYWHERE
Admin
13-20

Using the dbANYWHERE Admin tool
Fields

Testing link performance

The dbANYWHERE Admin tool lets you test a dbANYWHERE server’s link
performance.

To test link performance:

1 Start the dbANYWHERE Admin tool.

2 Connect to a dbANYWHERE server.

3 From the View menu, choose Ping.

4 Optional. Change the ping text, ping count, and repeat count.

5 Optional. Select the Results/Show checkbox.

6 Click Ping.

The dbANYWHERE Admin tool pings the dbANYWHERE server. When
the Admin tool receives the echo, it displays the round-trip time and
the byte transfer rate.

<ID> ID number for the connection. dbANYWHERE
Admin assigns the ID numbers.

<IP address> IP address of the machine that is connected to
dbANYWHERE

<time> Length of time since the connection was made

<not used> Not used

<requests> Number of requests the connected machine
made to the dbANYWHERE Server machine

<bytes received> Number of bytes dbANYWHERE received from
the connected machine

<bytes sent> Number of bytes dbANYWHERE sent to the
connected machine
13-21

Chapter 13: Using dbANYWHERE
Fields

Changing dbANYWHERE properties

You can use the Properties dialog box to specify the following:
■ The IP address and port of the dbANYWHERE Server machine

(Network tab)
■ Message log configuration (Logging tab), SQL, Connection, Log to

screen/file options.
■ Memory list
■ AutoDisconnect
■ Idle disconnect
■ Allocation of dbANYWHERE resources (Resources tab)
■ Service configuration for dbANYWHERE on Windows NT (NT Service

tab)

To change dbANYWHERE properties:

1 Start dbANYWHERE or the dbANYWHERE Service Manager.

2 From the Options menu, choose Properties.

3 For information about the properties, press F1. There is F1 help for
each tab in the Properties dialog box.

Ping text Text string to send in the ping message

Ping count Number of copies of the text string to send in the
ping message

Repeat count Number of times to ping the dbANYWHERE Server
machine

Results Echo that dbANYWHERE Admin received back
from the dbANYWHERE Server machine

Show Indicates whether or not to display the results

Time stats Length of time between sending the ping and
receiving the echo

Clear Clears the Time stats text area
13-22

Logging messages
Setting the dbANYWHERE server URL

The Network tab lets you set the dbANYWHERE Server machine’s URL.
The default settings work for typical systems.

To set the URL:

1 Display the Network tab by going to the Options menu and choosing
Properties, then Network.

2 Specify the dbANYWHERE server’s port number in the Port Number
field.

The default value for a server running on your local machine is 8889.

3 Specify the dbANYWHERE server’s IP address in the IP Address field
by either:
■ Using the default value (select the Use Default checkbox) if you

have only one IP address defined for your dbANYWHERE server.
■ Entering a numeric value. Some servers are “multi-homed” and

have more than one IP address. For such machines, we recommend
that you specify the IP address.

Logging messages
The Logging tab lets you set up a message log. It specifies the information
to log and the logging destination. A message log is useful for debugging
during development. Since a message log can decrease performance, we
recommend not using one at runtime.

Note: dbANYWHERE truncates each message printed in the console or
Event Viewer at 8000 bytes.

To display the Logging tab:

From the Options menu, choose Properties, then Logging.

To log messages only when dbANYWHERE is maximized:

1 Select the Only When Visible checkbox.

2 Deselect the Always checkbox.
13-23

Chapter 13: Using dbANYWHERE
To log messages regardless of whether dbANYWHERE is maximized or
minimized:

1 Deselect the Only When Visible checkbox.

2 Select the Always checkbox.
13-24

Logging messages
Fields

Log menu

The Log menu contains the following commands:
■ Clear – deletes all log messages
■ Copy – copies selected log messages to the clipboard
■ Select All – selects all log messages

Log what: SQL statements Indicates whether or not to log the SQL
statements that are sent to the Data Source.

Log what: Connection stats Indicates whether or not to log the connection
statistics.

Log where: Log to screen Indicates when to log messages to the
dbANYWHERE window.

only when visible Indicates whether or not to log messages when
dbANYWHERE is maximized. This checkbox
applies only when dbANYWHERE is in console
mode. dbANYWHERE always selects this option
and you cannot change it.

always Indicates whether or not to always log messages
regardless of whether dbANYWHERE is
maximized or minimized.

Keep the most recent xxx
messages.

Specifies the number of messages to keep in the
log. The default value is 4096. To maximize the
performance of dbANYWHERE, use a smaller
number.

Log where: Log to file Indicates whether or not to log messages to a file.

(checkbox) Indicates whether or not to log messages to the
file specified by the “Logfile path” value.

Let file grow to xxx
megabytes.

Specifies the maximum file size. When the file
reaches the maximum size, dbANYWHERE
renames it to filename.bak and creates a
new file for additional messages. If
filename.bak already exists, dbANYWHERE
deletes the old filename.bak before
renaming the log file to filename.bak .

Logfile path Specifies the pathname for the log file.
13-25

Chapter 13: Using dbANYWHERE
■ Save As – saves all logged messages to the specified file

Allocating dbANYWHERE resources
The Resources tab lets you configure the connections of dbANYWHERE,
and limit shared resources to minimize the impact of lazy or hostile clients.

To display the Resources tab:

From the Options menu, choose Properties, then Resources.

Limit connect time

These settings prevent a client from tying up resources indefinitely.

Disconnect client after xxx
minutes

Indicates whether or not to disconnect a client
after the client has been connected for the
specified number of minutes even if the client is
active.

or if idle for xxx minutes Indicates whether or not to disconnect a client
after the client has been idle for the specified
number of minutes.
13-26

Allowing remote administration
Limit simultaneous sessions

Limit system resource usage

Allowing remote administration
The Remote Admin tab indicates whether or not to allow remote system
administration which means that you can control dbANYWHERE from a
computer other than the dbANYWHERE Server machine.

Note: Remote administration is currently limited to the features provided
by dbANYWHERE Admin.

To display the Remote Admin tab:

From the Option menu, choose Properties, then Remote Admin.

License
The License dialog box displays your current license settings. These
settings can only be changed by purchasing and upgrading your license.
This dialog box includes the following options:

Customer Name

The customer or generic license name.

User defined limit Specifies the maximum number of simultaneous
sessions. This number cannot exceed the “Limit
client sessions” values in the License dialog box.
Limiting the number of simultaneous sessions can
prevent too large a strain on your system. The
best value for this limit depends on your system
hardware and applications.

Deny connections if available
memory drops below xxx
mbytes.

Specifies the minimum amount of system
memory that must be available before making a
new connection. dbANYWHERE denies new
connections if available system memory drops
below this level.
13-27

Chapter 13: Using dbANYWHERE
Customer ID

The customer or generic license ID.

Database drivers

The list of LICENSED drivers is displayed here. Licensed drivers have a
different session limit than unlicensed drivers, as described below.

Limit Client Sessions

The maximum number of clients allowed to connect. There are separate
settings for licensed and unlicensed drivers—unlicensed drivers are
allowed a small number of connects for the purpose of evaluation only.

Note: dbANYWHERE uses the total number of connected clients when
checking license limits. For example, if your unlicensed limit is 2, and 2 or
more users are connected (to any driver), then you will not be able to
connect to any unlicensed drivers.

IP Addresses

If your license restricts dbANYWHERE to specific a specific IP address or
set of addresses, those IP addresses will be listed here. Otherwise, you’ll
see the “Any” box checked.

Expiration

Currently unsupported.

Release

These fields indicate which dbANYWHERE releases this license supports.

Allow NT Service Protocol

When this button is selected, this copy of dbANYWHERE may be
configured and run as a NT Service.
13-28

LiveUpdate
Note: This feature is available only if you are running dbANYWHERE
under Windows NT. For further information about installing an NT Service,
see “Configuring dbANYWHERE as a Windows NT service (Windows NT
only)” on page 13-8.

Allow Secure Protocol

Currently unsupported.

Allow Multiple Instances

Currently unsupported.

Upgrade button

Click this button to upgrade your license.

Note: You need one or more License Upgrade (.luf) files to upgrade. Use
the file selection dialog box to find a .luf file and select it. The upgrade
process displays a list of what was upgraded. Repeat for any additional
license files. These changes are effective immediately -- there is no need to
restart dbANYWHERE.

LiveUpdate
From the Options menu, select LiveUpdate to upgrade dbANYWHERE to
the latest version. A wizard guides you through the update process. See
“Updating Visual Cafe with LiveUpdate” on page 9-19.
13-29

I N D E X
Symbols
.ZIP file, contents, 13-6

A
accessor method, definition, 7-3
Actions wizard, 12-25
Add Table wizard, 12-28
adding

code to Java source, 4-23
components to forms, 5-9
components to palette, 5-33
DLL to a project, 10-19
form to project, 5-8
menu bar to frame or dialog box, 5-24
menu to a form, 5-23
packages to project, 4-37

Admin tool, dbANYWHERE, 13-18
administration, allowing remote

(dbANYWHERE), 13-27
advanced search criteria, setting, 4-37
advanced Win32 compiler options, 10-8
applet

adding to HTML page, 6-11
advantages, 6-2
creating, 2-6
definition, 6-1
determining required class files, 6-16
ending remote debugging, 8-35
including in Web page, 6-10
limitations, 6-3
passing parameters to, 6-12
setting up project as, 12-20
starting remote debugging, 8-34

Applet component, overview, 5-6
application

considerations when creating native Win32,
10-15

converting bytecode to Win32, 10-14
creating, 2-7
database columns, selecting, 12-23
definition, 6-3
deploying, 6-13
determining required class files, 6-16

ending remote debugging, 8-35
setting up project as, 12-20
starting remote debugging, 8-34
tables, selecting, 12-23

application builder support service, JavaBeans, 7-
8

architecture, three-tier, 13-2
arranging components on forms, 5-14
associating command keys and menu items, 5-27
AutoDetail component (dbAWARE), 12-4
automatic code generation, disabling, 9-27

B
backup options, specifying, 9-13
BeanInfo code, example, 7-17
Beans. See JavaBeans
binding code to a menu item, 5-28
binding of code

to form or component, 4-26
to menu command, 4-27

BorderLayout layout property, 5-16
bound property, definition, 7-4

See also constrained property
breakpoint

clearing, 8-20
diamond indicator, 8-10, 8-17
enabling and disabling, 8-20
ignoring all, 8-21
modifying conditional, 8-19
setting

conditional, 8-19
on a line number, 8-17
on a method name, 8-18
on variable or expression, 8-19
simple, 8-18

toggling, 8-10
viewing source code for, 8-21
working with, 8-16–8-23

Breakpoints menu, Debug workspace, 8-38
Breakpoints window, overview, 8-3
browser limitations, 9-26
building Java programs, 6-18
bytecode, converting to native Win32, 10-14
i

C
Cafe project, importing into Visual Cafe, 11-2
Call Stack window

overview, 8-5
using, 8-26–8-28
viewing method

parameters, 8-27
source code, 8-28
variables, 8-27

Calls menu, Debug workspace, 8-39
Calls window. See Call Stack window
CardLayout layout property, 5-16
cell fonts, changing, 12-35
class

adding, 4-7
defining with Create Class Wizard, 4-20
editing with Edit Class Wizard, 4-8, 4-21
finding, 4-6
grouping in Classes pane, 4-4

Class Browser
adding a subclass from, 4-7
adding methods from, 4-10
configuring, 4-16
editing event handler methods, 4-15
editing events from, 4-41
opening, 4-9
overview, 4-1
panes in, 4-5–4-16
window, 4-3

Classes menu, using, 4-50
Classes pane

navigating, 4-5
Show All Classes option, using, 4-6
Show Implements option, using, 4-6

CLASSPATH statement, 13-7
code

adding to Java source, 4-23
analyzing, 6-19
binding to a menu command, 4-27
binding to form or component, 4-26
binding to menu item, 5-28
compiling, 6-19
correcting, 4-25, 6-7
creating your own, 9-27
disabling automatic generation, 9-27
editing, 4-24
editing options, specifying, 9-15

enhancing, 4-25
programming hot keys in, 4-27
scrolling to specific line, 8-7
stepping through, 8-8–8-13
syntax errors, locating, 8-15
viewing, 4-25

column label, changing in table, 12-25
column type, changing in table, 12-25
command keys

associating with menu items, 5-27
programming in code, 4-27

compiler options
setting, 6-5
setting advanced Win32, 10-8

compiling
errors, about, 9-25
errors, locating, 9-26
projects, 6-4
projects, including library files, 10-9
source code, 6-19
using JAVAC.EXE, 2-5

component
adding an event, 4-39
adding to palette, 5-33
Applet, 5-6
arranging

in BorderLayout, 5-16
in CardLayout, 5-16
in FlowLayout, 5-17
in GridBagLayout, 5-18
in GridLayout, 5-18
on form, 5-14

attributes of
events methods, 2-3
interactions, 2-3
properties, 2-2
visual element, 2-2

binding code to, 4-26
changing, 5-12
converting to JavaBeans, 7-11
copying, 5-10
definition, 3-3
deleting

from form, 5-12
from palette, 5-35

displaying invisible, 5-13
form, overview, 2-3
ii

interaction, creating, 5-20
InvisibleHTMLLink, using, 5-29
JavaBeans

adding to Component Library, 7-13
creating, 7-14
deleting from Component Library, 7-20

layouts, creating, 5-4
modifying properties, 5-19
moving between forms, 5-12
MultiList, using, 5-29
project, overview, 2-4
selecting for table, 12-24
top-level, overview, 5-6
TreeView, using, 5-32
using with events, 4-39
viewing Java source code, 5-37
workspace, overview, 2-4

Component Library
adding custom component, 5-36
deleting an object from, 5-37
JavaBeans, adding, 7-13
JavaBeans, deleting, 7-20
overview, 5-36

Component Palette, overview, 5-28
configuring

Class Browser, 4-16
dbANYWHERE, 13-3–13-5

on one machine (local), 13-4
with three machines, 13-5
with two machines (local and remote),

13-5
with two machines (remote), 13-4

Hierarchy Editor, 4-16
modem to use with LiveUpdate, 9-20
UNIX-based Web servers, 6-17

ConnectionDescriptor class, using, 7-16
ConnectionInfo component (dbAWARE), 12-6
considerations

differences in main class between bytecode
and native Win32, 10-16

when creating a native Win32 application,
10-15

when linking a native Win32 application,
10-15

considerations when importing Visual J++
project, 11-5

constrained property, definition, 7-4

See also bound property
container

definition, 3-4
ScrollingPanel, using, 5-30
TabPanel, using, 5-31

container class, overview, 5-2–5-3
Continue to Cursor command, Debug workspace,

8-11
conventions used in manual, 1-11
converting Java applications, bytecode to native

Win32, 10-14
copying

components between forms, 5-10
menus, 5-23

correcting source code, 4-25
corruption, detecting, 9-28
Create Class Wizard, defining new classes, 4-20
Create Database wizard, 12-14
creating

applets, 2-6
applications, 2-7
component interaction, 5-20
documents in Source Editor, 4-23
interactions, 4-44
menus in Form Designer, 5-21
Palette tab, 5-33

cross-platform development, 9-26
current statement arrow, Debug workspace, 8-18
custom component, adding to Component

Library, 5-36
custom keywords, specifying, 9-7
custom palette, building, 5-33

D
data source

adding with ODBC Administrator, 12-16
connecting to, 13-10–13-14
creating with dbANYWHERE DataSources

tool, 12-16
defining, 12-15
identifying for project, 12-22
testing connection, 13-15
troubleshooting failed connection test, 13-

16
database

browser, about, 12-10
columns, selecting for application, 12-23
 iii

connecting to
data source, 13-10–13-14
Informix data source, 13-11
Microsoft Access data source, 13-11
Microsoft SQL data source, 13-13
ODBC SQL-based data source, 13-12
ODBC Xbase data source, 13-13
Oracle data source, 13-14
Sybase SQL Anywhere data source, 13-

10
Sybase SQL data source, 13-14
Watcom data source, 13-10

connecting to dbNAVIGATOR, 12-30
creating for project, 12-14
disconnecting from, 12-34
environment options, 12-2
grid component, adding, 12-32
manipulation functions, about, 12-12
selecting server for project, 12-21

Database Development Edition (dbDE) overview,
1-6

Database Grid component (dbAWARE), 12-6
DataSource Name tool, dbANYWHERE, 13-17
DataSource tool, using, 13-16
dbANYWHERE

Admin tool, 13-18
allocating resources, 13-26
allowing remote administration, 13-27
architecture, 13-2
configuring, 13-3–13-5

as Windows NT service, 13-8
one machine (local), 13-4
three machines, 13-5
two machines (local and remote), 13-5
two machines (remote), 13-4

connections, checking, 13-20
DataSource Name tool, 13-17
DataSources tool, 12-16
definition, 13-1
installing Windows NT service, 13-9
logging messages, 13-23
package

setting up for development, 13-7
using, 13-6–13-8

properties, modifying, 13-22
resources

limiting connection time, 13-26

limiting simultaneous sessions, 13-27
limiting system resource usage, 13-27

Resources tab, displaying, 13-26
running the Windows NT service, 13-9
server

checking statistics, 13-19
connecting to, 13-19
disconnecting from, 13-19
setting URL, 13-23

service, viewing messages, 13-9
setting up package for automatic download,

13-7
starting from Windows 95, 12-13
starting from Windows NT, 12-13
testing link performance, 13-21
tools, using, 13-16
updating using LiveUpdate, 13-29

dbaw (dbANYWHERE) package, 13-6
dbAWARE

applet, creating, 2-7
application, creating, 2-7
component

AutoDetail, 12-4
ConnectionInfo, 12-6
Database Grid, 12-6
MultiView, 12-6
overview, 12-3
Projection, 12-7
RelationView, 12-9
Session, 12-10

Project wizard, 12-19
wizard, about, 12-11

dbNAVIGATOR
about, 12-10
connecting to database, 12-30
connecting with server, 12-30
refreshing, 12-32
table, using to add, 12-28
using in form development, 12-29

Debug menu, Debug workspace, 8-36
Debug workspace

Breakpoints menu, overview, 8-38
Breakpoints window, 8-3
Call Stack window, 8-5
Calls menu, overview, 8-39
Continue to Cursor command, 8-11
current statement arrow, 8-18
iv

Debug menu, overview, 8-36
Debug toolbar, overview, 8-8
editing files in Source window, 8-8
Insert menu, overview, 8-37
menus, using, 8-35–8-42
Messages window, 8-5
printing from Source window, 8-7
Project menu, overview, 8-35
Set Breakpoint command, 8-18
Source menu, overview, 8-40
Source window, 8-6
Threads menu, overview, 8-39
Threads window, 8-4
using, 8-2–8-6
Variables menu, overview, 8-39
Variables window, 8-3
Watch window, 8-4
Window menu, overview, 8-41

debugging
ending a session, 8-28
ending remote, 8-35
incremental, 11-1
native Win32 Java applications, 10-13
overview, 2-4
remotely, 8-34–8-35
resuming a suspended thread, 8-31
resuming other suspended threads, 8-32
run-time editing, 9-4
setting up for remote, 8-34
single thread, 8-31
starting a session, 8-7
starting remote, 8-34
suspending a thread, 8-31
suspending other threads, 8-32
threads, 8-28
using Threads window, 8-29
ValueTips, setting, 9-5

default macro, saving, 4-53
defining, data source, 12-15
deleting

component from form, 5-12
inheritance relationships, 4-20
interactions, 4-47
object from Component Library, 5-37
palette components, 5-35

deploying
applications, 6-13

Java programs, 6-7
JavaBeans, 7-21
native Win32 applications, 10-13

description file
converting to JavaBeans, 7-11
definition, 7-11

design pattern, definition, 7-5
designing GUI with Visual Cafe, 5-7
dialog box, adding a menu bar, 5-24
disabling automatic code generation, 9-27
display font and color, customizing, 9-11
displaying inherited methods, 4-4
displaying invisible components, 5-13
DLL

adding to a project, 10-19
including in main project, 10-9
registering using SNJREG, 10-12
specifying a program for debugging, 10-5
specifying a program for running, 10-5

document, creating in Source Editor, 4-23
documentation

Visual Cafe
online help, 1-10
online tour, 1-10
user’s guide, 1-11

Visual Page
online help, 1-4
online tour, 1-3
user’s guide, 1-3

downloading latest updates, 9-19
drag-and-drop

in Package view, 4-38
in Project window, 3-24

E
Edit Class Wizard

editing classes, 4-8
editing new classes, 4-21

editing
event handler methods, 4-15
HTML files, 6-11
interactions, 4-46
menu and menu bar, 5-26
source code, 4-24

enhancing source code, 4-25
entry, definition, 3-2
environment options
 v

for debugging, 9-3
setting, 9-1

errors
compiling, 9-25
locating compiling, 9-26
programming, 9-25

event
adding to components, 4-39
editing from Class Browser, 4-41
editing from Form Designer, 4-41
using with components, 4-39
working with, 4-39–4-41

event adapter, definition, 7-7
event handler method

editing from Class Browser, 4-15
editing from Form Designer, 4-15

event handling service, JavaBeans, 7-6
event listener, definition, 7-6
event state object, definition, 7-6
example

adding a DLL to a project, 10-19
creating a native Win32 executable, 10-17
creating an executable with a DLL, 10-18
implementing BeanInfo information, 7-17

exceptions
catching, 8-13
handling, 8-13
making all break, 8-15
making only unhandled break, 8-15
setting, 8-14
throwing, 8-13

exporting
native classes, 10-6
native packages, 10-6

expressions, using in Watch window, 8-24

F
features

Database Development Edition (dbDE), 1-6
Professional Development Edition (PDE), 1-

6
support for JDK 1.1, 1-4
Visual Page, 1-2
Web Development Edition (WDE), 1-4

FlowLayout layout property, 5-17
fonts, conventions used in manual, 1-11
form

adding
a menu, 5-23
to project, 5-8
using drag-and-drop, 5-9
using the Insert menu, 5-9

binding code to, 4-26
dbNAVIGATOR, using to develop, 12-29
definition, 5-1
fields, tabbing between, 5-14

form component, overview, 2-3
Form Designer

creating menus, 5-21
editing event handler methods, 4-15
editing events from, 4-41

Frame component, overview, 5-7
frame, adding a menu bar, 5-24

G
getter method, definition, 7-3
graphics, displaying in Form Designer, 5-6
grid attributes, changing, 12-34–12-38
GridBagLayout layout property, 5-18
GridLayout layout property, 5-18
grouping

classes in Classes pane, 4-4
members in Members pane, 4-4

GUI, designing with Visual Cafe, 5-7
guidelines for adding code to source, 4-23

H
hardware limitations with Java, 9-24
Help file set, defining, 9-3
Hierarchy Editor

configuring, 4-16
deleting inheritance relationships, 4-20
right-click menu, using, 4-51
using, 4-17–4-20

hot keys
associating with menu items, 5-27
mapping Visual Cafe commands, 9-8
programming in code, 4-27

HTML file
adding an applet, 6-11
editing, 6-11
passing parameters to applets from, 6-12
viewing, 6-11
vi

I
importing

Cafe project, 11-2
Visual J++ project through dsp project file,

11-4
Visual J++ project through dsw workspace

file, 11-3
Visual J++project, overview, 11-3

incremental debugging, overview, 11-1
indexed properties, definition, 7-3
Informix data source, connecting to, 13-11
inheritance relationship

changing, 4-20
deleting, 4-20

inherited methods, displaying, 4-4
Insert Class Wizard, using, 4-20–4-22
Insert menu, Debug workspace, 8-37
interaction

changing an existing, 4-46
creating, 4-44
creating component, 5-20
deleting, 4-47
working with, 4-41–4-50

interested party, definition, 7-4
interface

defining with Create Class Wizard, 4-20
editing with Edit Class Wizard, 4-8, 4-21

Internet connectivity requirements, 1-12
introspection service, JavaBeans, 7-4
invisible component, displaying, 5-13
InvisibleHTMLLink component, using, 5-29

J
JAR. See Java ARchive
Java Abstract Window ToolKit (AWT), overview,

5-4
Java ARchive (JAR)

creating, 7-10
JavaBeans storage, 7-8

Java language
case sensitive limitations, 9-24
cross-platform features, 9-26
hardware limitations, 9-24

Java program, creating, 2-5
Java requirements for Visual Cafe, 1-15
Java source code

adding code, 4-23
correcting, 4-25
editing, 4-24
enhancing, 4-25
viewing, 4-25, 5-37

JavaBeans
adding to Component Library, 7-13
adding Visual Cafe information, 7-15–7-18
application builder support service, 7-8
associated files, 7-22
basic structure, 7-2
converting components to, 7-11
creating, 7-8, 7-14
deleting from Component Library, 7-20
design fundamentals, 7-9
event handling service, 7-6
features, 7-1
introspection service, 7-4
packaging, 7-21
persistence service, 7-7
properties, modifying, 7-20
property management service, 7-3
renaming, 7-23
services, 7-2–7-8
storage, 7-8
terminology, 7-2
testing, 7-9
tools for building, 7-21

JAVAC.EXE compiler, 2-5

K
keyboard equivalents

associating with menu items, 5-27
mapping Visual Cafe commands, 9-8
programming in code, 4-27

keywords, specifying custom, 9-7

L
layout manager, using None, 5-15
library files, including in main project, 10-9
License dialog box, 13-27
License Upgrade (.LUF) files, 13-29
limitations

browser, 9-26
case sensitivity in Java, 9-24
hardware, 9-24
 vii

Java language, general, 9-24
linking a native Win32 application,

considerations, 10-15
LiveUpdate

Internet, using over, 9-20
modem, using with, 9-20
troubleshooting, 9-23
uninstalling, 9-23
upgrading dbANYWHERE, 13-29
using with Visual Cafe, 9-19

LUCLEAN.EXE, using, 9-23

M
macro

playing the default, 4-52
recording the default, 4-52
saving the default, 4-53
using a recorded macro, 4-53
working with, 4-52–4-54

main project
setting the DLL directory, 10-10
setting the object file directory, 10-10

member
grouping in Members pane, 4-4
sorting in Members pane, 4-4

Member Attributes dialog box, using, 4-14
Members pane, navigating, 4-11
menu

adding menu items, 5-25
adding submenus, 5-25
adding to a form, 5-23
adding to menu bar, 5-24
Classes, using, 4-50
copying, 5-23
creating in Form Designer, 5-21
editing, 5-26
editing structure, 5-26

menu bar
adding to frame or dialog box, 5-24
editing, 5-26

menu command, binding code to, 4-27
Menu Designer, pop-up menu, 5-22
Messages window

build errors, 6-20
using, 6-19

Messages window, overview, 8-5
method

adding from Class Browser, 4-10
adding from Source pane, 4-15
displaying inherited, 4-4
setting breakpoint on, 8-18
stepping into, 8-9
stepping out of, 8-10
viewing parameters in Call Stack window, 8-

27
viewing source code in Call Stack window,

8-28
viewing variables in Call Stack window, 8-27

Microsoft Access data source, connecting to, 13-
11

Microsoft SQL data source, connecting to, 13-13
migrating

Visual Cafe 1.0 to 2.0, 3-22
modem

COM port, selecting, 9-21
configuring INIT string, 9-21
dialing parameters, selecting, 9-22
identifying for LiveUpdate, 9-20

modem, configuring for LiveUpdate, 9-20
modifying

JavaBean properties, 7-20
properties of components, 5-19

moving
component between forms, 5-12
palette components, 5-35

multicast event source, definition, 7-7
See also unicast event source

MultiList component, using, 5-29
MultiView component (dbAWARE), 12-6

N
native

applications
creating, 10-2
differences in main class, 10-16
exporting, 10-6
setting project options, 10-3
specifying the name, 10-3

classes, exporting, 10-6
DLLs, creating, 10-2
executables, creating, 10-2
packages, exporting, 10-6
Win32 executable, example, 10-17
Win32 executable, example with a DLL, 10-
viii

18
new features

Class Browser and Editor, 1-9
contextual menus, 1-7
debugger, 1-9
display options, 1-9
drag-and-drop, 1-9
enhanced wizards, 1-9
LiveUpdate, 1-10
Open by Name, 1-7
project and environment management, 1-8
version compatibility, 1-8
ZIP archive and JAR support, 1-7

None layout manager, 5-15

O
ODBC Administrator, adding data source, 12-16
ODBC SQL-based data source, connecting to, 13-

12
ODBC Xbase data source, connecting to, 13-13
online help

Visual Cafe, 1-10
Visual Page, 1-4

Oracle data source, connecting to, 13-14

P
package

dbANYWHERE
setting up for automatic download, 13-

7
setting up for development, 13-7

dbaw (dbANYWHERE), 13-6
symjava (JDBC), 13-6

Package view
creating packages, 4-38
using drag-and-drop, 4-38
working with, 4-37

packaging JavaBeans, 7-21
palette

adding components, 5-33
building a custom, 5-33
deleting components, 5-35
moving components, 5-35

Palette tab, creating, 5-33
pane

Members (Class Browser), 4-11

Source (Class Browser), 4-15
parameter

passing to applet, 6-12
viewing in Call Stack window, 8-27

path, setting for source files, 9-3
persist, definition, 7-7
persistence service, JavaBeans, 7-7
playing the default macro, 4-52
prerequisites for Visual Cafe, 1-11
Professional Development Edition (PDE)

overview, 1-6
program

building, 6-18
deploying, 6-7
pausing to debug, 8-9
restarting, 8-12
resuming, 8-12
running

to cursor location, 8-12
to first line, 8-11
to the end, 8-12

stepping through when paused, 8-22
stopping to debug, 8-9

programming
errors, common, 9-25

project
adding files, 3-13
closing, 3-23
compiler options, setting, 3-45–3-55
components, working with, 3-29–3-32
concepts, 3-3
creating database for, 12-14
creating new, 3-15
definition, 3-1
file, definition, 3-2
folder, definition, 3-2
folder, included files, 3-12
identifying data source, 12-22
multiple, working with, 3-14
opening existing, 3-16
options, setting, 3-34–3-45
packages, working with, 3-33–3-34
path, definition, 3-6
selecting the database server, 12-21
setting path for source files, 9-3
setting the DLL directory, 10-10
setting the object file directory, 10-10
 ix

setting up as applet or application, 12-20
settings, reviewing, 12-27
templates, 3-8
viewing files in, 3-26
working with, 3-15–3-24
workspace, using, 3-55

project component, overview, 2-4
Project menu, Debug workspace, 8-35
Project window

Files view, 3-8
Objects view, 3-3
Packages view, 3-6
using, 3-24–3-29

Projection component (dbAWARE), 12-7
properties

definition, 7-3
modifying component, 5-19
modifying dbANYWHERE, 13-22
modifying JavaBean, 7-20

property editor, definition, 7-8
property management service, JavaBeans, 7-3
property sheet, definition, 7-8

Q
quick keys

associating with menu items, 5-27
mapping Visual Cafe commands, 9-8
programming in code, 4-27

R
recording the default macro, 4-52
reflection, definition, 7-5
registering DLLs using SNJREG, 10-12
RelationView component (dbAWARE), 12-9
remote debugging

ending, 8-35
setting up, 8-34
starting, 8-34

removing
component from Component Library, 5-37
component from form, 5-12
palette components, 5-35

right-click menu, using in Hierarchy Editor, 4-51
running projects, 6-4
run-time editing, 9-4

S
sample

adding a DLL to a project, 10-19
creating a native Win32 executable, 10-17
creating an executable with a DLL, 10-18

save options, specifying, 9-13
ScriptMaker dialog box

Macros option, 4-53
using, 4-53

scrolling in Source Editor, 8-7
ScrollingPanel container, using, 5-30
search criteria

setting advanced, 4-37
specifying, 4-34

search path, specifying, 4-35
server

checking statistics (dbANYWHERE), 13-19
connecting with dbANYWHERE, 13-19
connecting with dbNAVIGATOR, 12-30
disconnecting from dbANYWHERE, 13-19
setting dbANYWHERE URL, 13-23

service, dbANYWHERE
configuring on Windows NT, 13-8
installing on Windows NT, 13-9
running on Windows NT, 13-9
viewing messages, 13-9

Session component (dbAWARE), 12-10
Set Breakpoint command, Debug workspace, 8-

18
setter method, definition, 7-3
settings, reviewing for project, 12-27
shortcut keys

associating with menu items, 5-27
mapping Visual Cafe commands, 9-8
programming in code, 4-27

SNJREG, registering DLLs, 10-12
sorting members in Members pane, 4-4
source code

adding code to, 4-23
analyzing, 6-19
correcting, 4-25, 6-7
creating your own, 9-27
editing, 4-24
editing options, specifying, 9-15
enhancing, 4-25
scrolling to specific line, 8-7
stepping through, 8-8–8-13
x

syntax errors, locating, 8-15
viewing, 4-25
viewing for thread, 8-33

Source Editor
creating new documents, 4-23
key editing options, specifying, 9-10
scrolling in, 8-7
setting typing mode, 4-39
using, 4-22–4-32

Source menu, Debug workspace, 8-40
Source pane, navigating, 4-15
Source window

editing files in, 8-8
overview, 8-6
printing files in, 8-7

startup mode, defining, 9-2
subclass, adding from Class Browser, 4-7
subprojects, working with, 3-58–3-60
Sybase SQL Anywhere data source, connecting

to, 13-10
Sybase SQL data source, connecting to, 13-14
SymantecBeanDescriptor class, using, 7-16
symjava (JDBC) package, 13-6
syntax errors, 9-25

locating in source code, 8-15
system path, definition, 3-6
system requirements for Visual Cafe, 1-12

T
tab, creating Palette, 5-33
tabbing between form fields, 5-14
table

dbNAVIGATOR, using to add, 12-28
selecting for application, 12-23

TabPanel container, using, 5-31
target, definition, 3-1
templates for projects, 3-8
testing

data source connection, 13-15
link performance (dbANYWHERE), 13-21

text formatting, specifying, 9-5
thread

debugging, 8-28–8-34
debugging a single, 8-31
resuming other suspended, 8-32
resuming suspended, 8-31
suspending, 8-31

suspending other, 8-32
viewing

active variables, 8-33
call stack for, 8-33
source code for, 8-33

Threads menu, Debug workspace, 8-39
Threads window, overview, 8-4
three-tier architecture, 13-2
tool

Admin (dbANYWHERE), 13-18
DataSource (dbANYWHERE), 13-16
DataSource Name (dbANYWHERE), 13-17
for building JavaBeans, 7-21

toolbar, Debug workspace, 8-8
toolbar, position and visibility, 9-17
TreeView component, using, 5-32
troubleshooting

compiling errors, 9-25
data source connection, 13-16
detecting corruption, 9-28
LiveUpdate connection, 9-23
programming errors, 9-25

typing mode, setting in Source Editor, 4-39
typographic conventions used in manual, 1-11

U
unicast event source, definition, 7-7

See also multicast event source
uninstalling LiveUpdate, 9-23
UNIX-based Web server, configuring, 6-17
updating Visual Cafe, 9-19
URL, setting dbANYWHERE server, 13-23

V
ValueTips, setting, 9-5
variable

adding to Watch window, 8-25
deleting from Watch window, 8-26
modifying in Variables window, 8-24
modifying in Watch window, 8-25
setting breakpoint on, 8-19
viewing active in thread, 8-33
viewing in Call Stack window, 8-27
viewing the type of, 8-24
viewing the value of, 8-23
watching, 8-10
 xi

Variables menu, Debug workspace, 8-39
Variables window

overview, 8-3
using, 8-23–8-24

viewing
HTML files, 6-11
Java source code for a component, 5-37
source code, 4-25

Visual Cafe
Database Development Edition (dbDE), 1-1
editors overview, 1-15
Internet connectivity requirements, 1-12
LiveUpdate, using with, 9-19
migrating from 1.0 to 2.0, 3-22
new features, 1-7–1-10

Class Browser and Editor, 1-9
contextual menus, 1-7
debugger, 1-9
display options, 1-9
drag-and-drop, 1-9
enhanced wizards, 1-9
LiveUpdate, 1-10
Open by Name, 1-7
project and environment management,

1-8
version compatibility, 1-8
ZIP archive and JAR support, 1-7

prerequisites, 1-11
Professional Development Edition (PDE), 1-

1
startup mode, defining, 9-2
system requirements, 1-12
text formatting, specifying, 9-5
toolbars overview, 1-14
tools for building JavaBeans, 7-21
Web Development Edition (WDE), 1-1
windows overview, 1-13

Visual J++ project, importing into Visual Cafe, 11-
3

W
warnings for adding code to source, 4-23
Watch window

adding variables, 8-25
deleting variables, 8-26
modifying variables, 8-25
overview, 8-4

using expressions in, 8-24
watching a variable, 8-10
Watcom data source, connecting to, 13-10
Web Development Edition (WDE) overview, 1-4
Web page, including applet in, 6-10
Web server, configuring UNIX-based, 6-17
Win32 compiler options, setting advanced, 10-8
Window menu

Class Browser command, 4-3
Debug workspace, overview, 8-41

wizard
about dbAWARE, 12-11
Actions, 12-25
Add Table, 12-28
Create Database, 12-14
dbAWARE Project, 12-19

workspace component, overview, 2-4
workspaces, using with projects, 3-55

Z
ZIP file, contents, 13-6
xii

 xiii

	Symantec Visual CafeTM for JavaTM User’s Guide
	Copyright Notice
	Trademarks
	Visual Cafe for Java
	Windows Edition
	User’s Guide

	SYMANTEC LICENSE AND WARRANTY
	Language Addendum
	Section I Using Visual Cafe
	Chapter 1 Welcome to Visual Cafe
	Chapter 2 Developing in Visual Cafe
	Chapter 3 Working with projects and workspaces
	Chapter 4 Working with Java Source Code
	Chapter 5 Including Visual Components
	Chapter 6 Compiling, running, and deploying your p...
	Chapter 7 Working with JavaBeans
	Chapter 8 Debugging Java Programs
	Chapter 9 Fine-Tuning Visual Cafe
	Section II Professional Features
	Chapter 10 Creating Native Win32 Java Applications...
	Chapter 11 Incremental Debugging and Importing Pro...
	Section III Database Connectivity
	Chapter 12 Developing a dbAWARE project
	Chapter 13 Using dbANYWHERE
	INDEX i

	Using Visual Cafe
	Welcome to Visual Cafe
	Features
	Visual Page
	Accessible and powerful feature set
	Extensive HTML authoring tools
	State-of-the-art media support
	Extensive template and sample set
	One-step publishing
	Visual Page Documentation
	User’s Guide
	Visual Page Getting Started Guide and Tour
	Online help

	Visual Cafe Web Development Edition
	Support for JDK 1.1 (new in version 2.0)
	Form-centric development environment
	Component Palette
	Component Library
	Interaction Wizard
	Automatic code generation
	Debugger
	Hierarchical view
	Insert Class Wizard

	Visual Cafe Professional Development Edition
	Importing projects from Microsoft Visual J++
	Native building and debugging native applications
	Incremental Debugging

	Visual Cafe Database Development Edition
	Speed development with visual database tools
	Get open database connectivity
	Offer swift, scalable data access—affordably

	What’s new in Visual Cafe 2.0
	Contextual Menus
	ZIP archive and JAR (Java ARchive) support
	Open by Name
	Version Compatibility
	Project and environment management
	Project types
	Project window
	Event model migration utility
	Enhanced macro editing

	Drag-and-drop
	Display options
	Debugger
	Class Browser and Editor
	New and enhanced Wizards
	LiveUpdate

	Visual Cafe documentation
	Visual Cafe Getting Started and Tour
	Online Help
	User’s Guide
	Part One: Developing in Visual Cafe
	Part Two: Professional features
	Part Three: Database connectivity
	Conventions used in the Visual Cafe User’s Guide

	Prerequisites for using Visual Cafe
	System requirements
	Internet connectivity

	Starting Visual Cafe
	To start Visual Cafe:
	1 Open the Start Menu.
	2 Locate the Symantec Visual Cafe entry under Prog...
	3 Select Visual Cafe. The Visual Cafe environment ...
	4 Locate the Visual Cafe folder on your system.
	5 Locate the Visual Cafe program icon and double-c...

	The Visual Cafe environment
	Windows
	Toolbars
	Visual Cafe windows
	Editors

	How much Java do I need to know to use Visual Cafe...
	What’s next?

	Developing in Visual Cafe
	Putting Visual Cafe to work
	Understanding Visual Cafe components
	Forms hold your Java program together
	Projects keep your work together
	Using workspaces to customize your work environmen...

	Debugging with Visual Cafe
	Symantec’s Just-in-time compiler and the Visual Ca...
	Sun Microsystems’ Java Compiler and JDK

	Overview of creating a Java program
	Overview of creating an applet
	To create an applet:
	1 Create a project with an applet template. Visual...
	2 Design the user interface by adding forms and co...
	3 If necessary, modify the Java source code.
	4 Set project options.
	5 Run the applet in Visual Cafe.
	6 If needed, debug the applet.
	7 Add the applet to your HTML page. You may also w...
	8 Deploy the applet.

	Overview of creating an application
	To create an application:
	1 Create a project with an application template. V...
	2 Follow steps 2 through 4 of creating an applet a...
	3 Test run the application in Visual Cafe.
	4 If needed, debug the application. You should als...
	5 Deploy the application.

	Overview of creating a dbAWARE applet or applicati...
	To create a database-aware applet or application:
	1 Start dbANYWHERE.
	2 Create your database by using the tools shipped ...
	3 Identify the database you want to use for the pr...
	4 Create the dbAWARE project using the dbAWARE Pro...
	5 If you are creating a dbAWARE applet, follow ste...
	6 If you are creating a dbAWARE application, follo...

	Working with projects and workspaces
	What is a project?
	The project file and the project folder
	Basic concepts of working with a project
	Looking at the Objects view
	Project contents
	Source files
	Projects
	Documentation files
	Groups

	Organizing files and folders
	The system path
	The project path

	Looking at the Packages view
	Looking at the Files view

	Creating projects by using templates
	Choosing the project template
	Professional Development Edition
	Database Development Edition

	Constructing a logically arranged project folder
	Looking at the files in the project folder
	Adding files to a project
	To add files to the Visual Cafe environment:
	1 From the Insert menu, choose Files Into Project....
	2 Select the file(s) that you want to add.
	3 Click Add or Add All, as appropriate.
	4 Click OK.

	To add files from the Windows Explorer or other fi...

	Working on multiple projects
	Sharing files across multiple projects

	Compiling projects
	Defining project options

	Beginning to work with a project
	Creating a new project
	To create a new project:
	1 From the File menu, choose New Project.
	2 Select the project template you want as the base...
	3 Click OK.
	4 To save the project, from the File menu, choose ...
	5 Select a folder and type the project name in the...

	Opening an existing project
	To open an existing project from within Visual Caf...
	1 From the File menu, choose Open.
	2 Navigate to the project folder.
	3 Make sure Visual Cafe Project is shown in the Fi...
	4 Select a project from the list.
	5 Click Open.

	To open an existing project from the Windows Explo...

	Saving, renaming, and copying a project
	Adding files to and removing files from projects
	To add new project entries to a project file:
	1 From the Insert menu, choose Files into Project....
	2 Choose either Net Files (*.java,*.html) or All F...
	3 Navigate to the appropriate folder and either do...
	4 The name of the file is added to the lower scrol...
	5 Repeat step 3 for each additional file you want ...
	6 When you have specified all the files you want t...

	To save a new project
	1 Activate the Project window, then from the File ...
	2 Select a folder and type the Save As field
	3 The Visual Cafe project file must have the exten...
	4 Click Save. The new file name appears in the tit...

	To remove project files:
	Creating groups
	To create a new group:
	1 Choose Window, then Component Library from the V...
	2 Choose Group from the Insert menu to add a new g...
	3 A new folder appears in the Component Library.
	4 Enter the name of the new group and click OK.

	Saving only the project file
	To save only the project and not its files:

	Working with multiple projects
	1 If the frontmost window is a Project window, the...
	2 If the frontmost window is not a Project window,...

	Viewing active projects
	To save all the files of a project:
	To save one file of a project:
	1 Open the file in an editor and activate that win...
	2 From the File menu, choose Save.

	To save and rename a project:
	1 Activate the Project window, then from the File ...
	2 Type the project name in the File name field, th...
	3 Using operating system tools, delete from the pr...

	To copy a project:
	1 If Visual Cafe is running, make sure that the Pr...
	2 In Windows, copy the files in the project and pa...
	3 Drag the files and drop them where you want to c...
	4 If all of your files are in one project folder, ...

	To delete a project:
	1 If Visual Cafe is running, make sure that the Pr...
	2 From the Windows operating system, delete the pr...

	Migration from Visual Cafe 1.0 to Visual Cafe 2.0
	Migrating a project from version 1.0 to 2.0
	Migrating Java source files from the JDK 1.0 to th...
	To migrate a project file:
	1 Open the file in the Source window.
	2 From the Project menu, choose Migrate.
	3 Look over your code and make modifications as ne...

	Closing a project
	To close the active project:
	To close all projects and exit Visual Cafe:

	Using the Project window
	Dragging-and-dropping into the Project window
	Viewing the files in a project
	Looking at the Files view

	Adding a new file to a project
	To add a new file to a project:
	1 From the File menu, choose New File.
	2 From the File menu, choose Save As.
	3 In the Save As dialog box, type the file name (i...
	4 Click Save.
	5 In the Source window, add appropriate code or te...

	Adding an existing file to a project
	To add files from the Visual Cafe environment:
	1 From the Insert menu, choose Files into Project....
	2 Select the file(s) that you want to add.
	3 Click Add or Add All, as appropriate.
	4 Click OK.

	To add files from the Windows Explorer or other fi...

	Deleting a file from a project
	To remove a file by pressing Delete:
	To remove files by using the Project Files dialog ...
	1 Make the Project window active.
	2 In the Packages or Files view, right-click the w...
	3 In the Project Files dialog box, select one or m...
	4 Click Remove.
	5 Click OK.

	Copying a file of a project
	To copy a file of a project:
	1 Open the project(s) you want to use and click th...
	2 In the Project window, select the file that you ...
	3 From the Edit menu, choose Copy (or click the to...
	4 Activate the Project window that you are moving ...
	5 From the Edit menu, choose Paste (or click the t...

	Working with components in a project
	Viewing the components and HTML files in a project...
	To look at the Objects view:

	Adding a component
	To add a component by using an Insert menu item:
	1 While the Project window or Form Designer is act...
	2 Right-click the Project window and choose an Ins...

	Copying a component
	To copy and paste a component:
	1 Open the project(s) you want to use.
	2 Click the Objects tab in the Project window, the...
	3 From the Edit menu, choose Copy (or click the to...
	4 Click the Objects tab in the Project window that...
	5 If you want to paste the component within anothe...
	6 While the target Project window is active, from ...

	To copy and drag a component:

	Renaming a component
	To rename a component from the Project window:
	To rename a component from the Property List:

	Deleting a component
	To delete a component:
	1 Click the Objects tab in the Project window.
	2 Select the component and press the DELETE key.

	Working with packages
	Viewing the packages in a project
	To see the Packages view:

	Adding packages to Visual Cafe

	Setting project-level options
	To set options that apply to a single project:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.

	To set environment options:
	Project Options
	Project
	Compiler
	Directories
	Version Control
	Debugger
	Specifying whether builds are debug or final
	To set the release type:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select one of the following options:
	5 Click OK.

	To change a release type option set:
	1 From the Project Options dialog box, set the rel...
	2 Click the Compiler and Directories tabs and set ...
	3 Click OK.

	Project types
	To set the project type to applet, application, Ja...
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select one of the following options:
	5 Click OK.

	Specifying what applets to run and the HTML file
	To test the files for a Web site:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Specify an HTML file in one of these ways:
	5 Click OK.

	Making applets run in the Applet Viewer or a brows...
	To specify where applets are to run:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select Applet as the Project Type, if needed, th...
	5 Click OK.

	Specifying the main class to run for an applicatio...
	To specify the main class to run for an applicatio...
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select Application, if needed, then type the nam...
	5 Click OK.

	Specifying arguments for application execution
	To specify command line arguments:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select Application, if needed. In the Program ar...
	5 Click OK.

	Specifying whether to parse imports
	To specify whether to parse inputs:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select Parse imports to specify that imports be ...
	5 Click OK.

	Specifying whether to clear messages before builds...
	To specify that the Messages window not be cleared...
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Select Clear Messages window before build to cle...
	5 Click OK.

	Setting compiler options for a project
	To access the Compiler view:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Com...

	Specifying general compiler options
	Show compiler warnings
	Show all Java messages
	Show progress messages
	Show dependencies
	Generate debug information
	Use Java optimizations
	Use the Sun Java compiler

	Specifying file search paths and the output folder...
	To access the Directories view:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Dir...

	To specify source file search paths:
	1 Go to the Directories view of the Project Option...
	2 Choose Source Files in the Show directories for ...
	3 Modify the list as needed:
	4 Click OK.

	To specify library file search paths (native only)...
	1 Go to the Directories view of the Project Option...
	2 Choose Library files in the Show directories fie...
	3 Modify the list as needed:
	4 Click OK.

	Specifying the output folder for a project
	To specify the output folder:
	1 Go to the Directories view of the Project Option...
	2 Choose Output folder in the Show directories for...
	3 Type a folder and full path in the field, or sel...
	4 Click OK.

	Specifying class search paths for a project
	To specify the class search paths:
	1 Go to the Directories view of the Project Option...
	2 Choose Class Path in the Show directories for fi...
	3 Modify the list as needed:
	4 To generate the class path based on the files in...
	5 To append the Visual Cafe environment class path...
	6 Click OK.

	Setting the class path for the Visual Cafe environ...
	Having the Visual Cafe environment inherit the cla...
	Inheriting the Windows class path setting
	1 In the Environment section of \VisualCafe\Bin\sc...
	2 Restart Visual Cafe for the change to take effec...

	Setting the class path for a Web browser

	Using Version Control
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Ver...
	4 Choose the version control software you want to ...
	5 Click OK.

	Setting remote debugging options for a project
	Defining the Visual Cafe startup mode
	1 From the File menu, choose Environment Options, ...
	2 In the On Startup area, select the appropriate o...

	Automating source file backups
	1 From the File menu, choose Environment Options, ...
	2 Select Backup files on Save.
	3 Select the location and name of the backup files...

	Defining a new default template
	1 From the File menu, choose New Project.
	2 Select a template.
	3 Click Set Default.
	4 Click OK.

	Creating a project template and adding it to the l...
	1 Create a project to be used as the template. Add...
	2 With the current project in a Project window, ch...
	3 Select the group that you want the template to b...
	4 Type a name and description for the template in ...
	5 Click OK.

	Deleting a project template
	1 Open the Component Library.
	2 Display the contents of the Project Templates fo...
	3 From the template list.

	Use Workspaces to customize your work environment
	To change to a different workspace:
	To save your current Visual Cafe window arrangemen...
	1 Configure the screen as you like by opening the ...
	2 From the Window menu, choose Workspaces, then ch...
	3 In the New Workspace dialog box, type a new name...
	4 Click OK.

	To rename a workspace:
	1 From the Window menu, choose Workspaces, then ch...
	2 In the Rename Workspace dialog box, type a new n...
	3 Click OK.

	To delete a workspace:

	Working with subprojects
	Adding subprojects
	1 Open the project you want to add subprojects to....
	2 From the File menu, choose Open.
	3 Navigate to the project folder.
	4 Make sure Visual Cafe Project is shown in the Fi...
	5 Select a project from the list.
	6 Click Open.
	7 Add the .vep file of a project to the parent pro...

	Objects View
	Files view
	Project options and subprojects

	Importing source code
	1 Make sure that the source file is an extension o...
	2 Insert the file.
	3 Remove the Applet1.java file.

	The Visual Cafe main file menus
	The File menu
	New Project…
	New File
	Open…
	Files of Typelist box
	Save / Save All
	Save As…

	The Edit menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Delete
	Select All

	The Search menu
	Find...
	Find Again
	Replace...
	Find in Files...
	Compare Files...
	Bookmarks...
	Go to Buffer...
	Go to Line...
	Go to Function
	Go to Definition
	Go to Marking Delimiter
	Go to Current Error
	Go to First Error
	Go to Next Error
	Go to Previous Error

	The Insert menu
	Form
	Applet
	Component
	Class
	Member
	Group
	Files into Project
	Component into Library

	The Object menu
	Edit Frame
	Edit Source
	Add Interaction
	Add To Library

	The Window menu
	New Window
	Workspaces

	The Help menu
	Help Topics
	Java API Reference
	Java Language Reference
	About Visual Cafe
	LiveUpdate

	Working with Java Source Code
	Using the Class Browser
	Grouping and sorting classes and members
	Using the Class Options, Group/Sort tab
	Specifying group classes
	Sorting members
	Group members

	Controlling the display of inherited methods
	Using the Class Options, Inheritance tab
	Showing inherited methods
	Using full method names
	Showing overridden methods

	Navigating the panes
	Navigating the Classes pane
	Using the Classes pane
	Using the Show All Classes option
	Using the Show Implements option

	Finding a class
	To change which classes are displayed in the Class...
	1 In the Classes pane, choose Classes, then Option...
	2 In the Class Options dialog box, set the options...

	To create a new class with the Class Wizard:
	1 In the Classes pane, optionally select a class y...
	2 Right-click in the Classes pane and choose Inser...
	3 Complete the Insert Class Wizard. “Using the Ins...

	Adding a class
	Adding a subclass from the Class Browser
	To add a subclass from the Class Browser:
	1 Select a class as the base class of the your new...
	2 Right-click in the Classes pane to display the p...
	3 Select the command Insert Class.
	4 Complete the Insert Class Wizard.

	To edit a class or interface with the Edit Class W...
	1 In the Classes pane, select a class you want vie...
	2 Choose Classes Edit Class, or right-click in the...
	3 Complete the Edit Class Wizard. On the first pag...
	4 Click Finish if you are finished with the defini...
	5 From the Available interfaces list, select the i...
	6 Click Finish if you are finished with the defini...
	7 From the Available methods list, select the meth...
	8 If you want to review or change part of the defi...
	9 Click Finish when you are finished with the defi...
	10 Complete the definition of the class or interfa...
	11 Click OK.

	Viewing and editing the source code for a class
	To delete a class inheritance:
	1 In the Classes pane, choose Classes, then Option...
	2 In the Group/Sort tab, specify a Class Grouping ...
	3 In the Classes pane, select a class, then press ...

	To delete a class:

	Adding a method from the Class Browser
	To add a method from the Class Browser:
	1 In the Classes list, select the class that will ...
	2 From the Insert menu, choose Member.
	3 Specify the member declaration.
	4 Indicate the base class access type. You can als...
	5 From the Insert menu, choose Member, or use the ...
	6 Complete the Insert Member dialog box.
	7 Click OK.

	Navigating the Members pane
	To locate a method or data variable in the Members...
	1 Select a class in the Classes pane.
	2 Click in the Members pane, then type the method ...

	To change what members are displayed in the Member...
	1 In the Members pane, right-click and choose Opti...
	2 In the Class Options dialog box, set the options...

	To create a new member from the Members pane:
	1 In the Class pane, select a class you want to ad...
	2 Right-click in the Members pane and choose Inser...
	3 Type the declaration and choose the access type,...
	4 Select the member in the Members pane to view an...

	To view attributes of a member from the Members pa...
	1 In the Class pane, select a class that contains ...
	2 Select the member in the Members pane.
	3 Right-click in the Members pane and choose Membe...
	4 The Member Attributes dialog box appears.
	5 Change the access type if needed, then click OK....

	To delete a member from the Members pane:
	1 In the Class pane, select a class that contains ...
	2 Select a member or shift-click multiple members ...
	3 Right-click in the Members pane and choose Delet...

	To view or edit the source code of a member:
	To rename a class or member:
	1 Select the class or member in the Classes or Mem...
	2 When a larger edit box appears, type the new nam...

	To add a class or member name by dragging it into ...
	Using the Member Attributes dialog box
	To access the Member Attributes dialog box:
	1 Click on a member in the Members pane.
	2 Choose Classes, then Member attributes.

	Navigating the Source pane
	Adding a method from the Source pane
	To add a method from the Source pane:
	1 Open the Source pane for the applet or form.
	2 In the Source panel, select an event method from...
	3 Replace the placeholder text “// to do: place ev...
	4 Save the file.

	Editing event handler methods
	To edit event handler methods from the Form Design...
	1 Do either of the following:
	2 From the Source window Events drop-down list, se...
	3 Enhance the code block as needed.

	To edit event handler methods from the Class Brows...
	1 Select the object class that you want to enhance...
	2 In the Members pane, double-click on the event t...
	3 In the editing pane, enhance the code block as n...

	Configuring the Class Browser and Hierarchy Editor...
	To configure the Class Browser and Hierarchy Edito...
	1 From the Tools menu, choose Environment Options....
	2 In the Class Browser and Class Hierarchy area, s...

	Navigating the Hierarchy Editor
	To display the Hierarchy Editor:
	To enable and disable viewing imports:
	To locate a class in the display:
	To change the inheritance hierarchy:
	To remove an inheritance:
	To create a new class:
	1 Optionally select a class you want the new class...
	2 Drag from the class into the background space, o...
	3 Complete the Insert Class Wizard. See “Using the...

	To edit an existing class:
	1 Select a class you want view or edit.
	2 Right-click and choose Edit Class. Or choose Hie...
	3 Complete the Edit Class Wizard. See “Using the I...

	To view a class in a Source window
	To view a class in the Class Browser

	Working with subclasses
	To add a subclass from the Hierarchy Editor:
	1 Select the parent/base class.
	2 Drag the selection and release it in any whitesp...
	3 Complete the Insert Class wizard. See “Using the...

	To add classes to an existing package from within ...
	1 In the Project window, click the Packages tab.
	2 Select the package to which you want to add the ...
	3 Choose Insert, then Class.
	4 Complete the Insert Class wizard. See “Using the...

	To add a class within the Class Browser:
	1 Select a class as the base class of the your new...
	2 Right-click in the Classes pane to display the p...
	3 Select the command Insert Class
	4 Complete the Insert Class wizard. See “Using the...

	Changing inheritance relationships
	Deleting inheritance relationships
	To delete an inheritance relationship:
	1 Select the line that links a class and its paren...
	2 Right-click on the window to display the pop-up ...
	3 Choose Delete Inheritance.

	Using the Class Attributes dialog box
	To change the attributes for the selected class:

	Using the Insert Class Wizard
	To define a new class or interface with the Create...
	1 Do one of the following:

	To edit a class or interface with the Edit Class W...
	1 Do either of the following:
	2 On the first page of the wizard, specify the opt...
	3 Click Finish if you are finished with the defini...
	4 From the Available interfaces list, select the i...
	5 Click Finish if you are finished with the defini...
	6 From the Available methods list, select the meth...
	7 If you want to review or change part of the defi...
	8 Click Finish when you are finished with the defi...
	9 Complete the definition of the class or interfac...

	Using the Source Editor
	Creating a new document
	Adding code to a Java source file
	Guidelines and warnings

	Editing source code
	Correcting your source code
	To go directly to a syntax error from the Messages...
	1 From the Window menu, choose Messages to bring t...
	2 Double-click on any error message to go to that ...

	Viewing a component’s Java source code
	To view a component’s Java source code:

	Enhancing an object’s Java source code
	To modify a component’s source code:
	1 Do either of the following:
	2 In the Source window, add your custom code to th...

	Binding code to a form or component
	To bind code to a form or component:
	1 In the Form Designer, open the Source window for...
	2 In the Source window, select the event that you ...
	3 The method template is added to the source file....
	4 Enter the appropriate code into the method templ...

	Binding code to a menu command
	To bind code to a menu command:
	1 Open the menu bar in the Menu Editor.
	2 Select the menu item.
	3 Choose Edit Source from the pop-up menu.
	4 In the Source window, select the onAction event ...
	5 Add the appropriate Java code to the event code ...

	Programming hot keys
	Moving around in a file with the Search menu
	Jumping to a matching delimiter
	To jump to a specific line:
	1 From the Search menu, choose Go To Line.
	2 Type the line number in the text box and click O...

	To jump to a function:
	1 From the Search menu, choose Go to Function.
	2 Select a function name from the scrolling list o...

	Searching through and comparing multiple files
	To search for a string in multiple files:
	To compare two files:

	Adding a method from the Source window
	To add a method from the Source window:
	1 Open the Source window for the form.
	2 In the Source window, select an event handler fr...
	3 Replace the placeholder text "// to do: place ev...
	4 Save the file.

	Enhancing Java code for a component
	Specifying the search file type and location
	To specify search criteria:
	1 Select the appropriate search criteria options a...
	2 Specify the search pattern in the Find what fiel...
	3 Specify the types of files to search by entering...
	4 Select the scope of the search. You can specify ...
	5 To expand a search into subfolders, select the S...

	Specifying the file search path
	To access the Directories view:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Dir...

	Specifying source file search paths
	To specify a source file search path:
	1 Go to the Directories view of the Project Option...
	2 Choose Source files in the Show directories fiel...
	3 Modify the list as needed:
	4 Click OK.

	Setting Advanced Search Criteria

	Adding packages to Visual Cafe
	Using the Package view
	Using drag-and-drop
	Creating packages
	Using the Context menu

	Working with events
	Using events with your own components
	Adding an event to a component
	To add an event handler from the Source window:
	1 In the Objects drop-down list of the Source wind...
	2 In the Events/Methods drop-down list, choose the...
	3 In the event handler, replace the placeholder te...

	Editing an event handler
	To edit an event handler from the Class Browser
	To edit an event handler in the Source window
	1 In the Objects drop-down list of the Source wind...
	2 In the Events/Methods drop-down list, choose the...
	3 Edit the Java code.

	Deleting an event handler
	Editing event methods
	To edit event methods from the Form Designer:
	1 Do either of the following:
	2 From the Source window Events drop-down list, se...
	3 Enhance the code block as needed.

	To edit event methods from the Class Browser:
	1 Select the object class that you want to enhance...
	2 In the Members pane, double-click on the event t...
	3 In the editing pane, enhance the code block as n...

	Working with the Interaction wizard
	Changes between the JDK 1.0 and 1.1 event models
	1 Visual Cafe generates an adapter or listener imp...
	2 In the adapter/listener class, Visual Cafe gener...
	3 Visual Cafe instantiates this adapter/listener c...
	4 An event handler is generated. If the event hand...
	5 The interaction specified in the wizard is gener...

	Creating an interaction
	To create an interaction relationship between two ...
	1 In the Form Designer or Project window, select t...
	2 Drag a line from the trigger component to the ac...
	3 In the Interaction Wizard, verify that the compo...
	4 In the Start an interaction field, select the ev...
	5 In the Choose what you want to happen field, sel...
	6 In the second window, specify the interaction co...
	7 Click Finish.

	To connect components with the Interaction Wizard:...
	1 Select a component in the Form Designer or Proje...
	2 Choose Object, then Add Interaction.
	3 Complete the Interaction Wizard as described in ...

	Changing an existing interaction
	To change an existing interaction:
	1 Make the project active by clicking the Project ...
	2 Choose Window, then Class Browser
	3 In the Classes list, click the container class t...
	4 Identify the appropriate event handler. Event ha...
	5 Display the method’s source code by clicking the...
	6 In the editing pane, make any source code change...

	Deleting an interaction
	To delete the event handler in the Class Browser:
	1 Make the project active by moving focus to the p...
	2 From the Window menu, choose Class Browser.
	3 In the Classes pane, click the container class t...
	4 Select the appropriate event handler for the int...
	5 Delete the interaction in the event handler code...

	To delete the event handler in the Source window:
	1 Open the source file containing the event handle...
	2 In the Objects drop-down list of the Source wind...
	3 In the Event/Methods drop-down list, choose the ...
	4 Delete the interaction in the event handler code...

	To delete the applicable portions of the listener ...
	1 Open the Source window.
	2 Delete the applicable portions of code.

	Using the Classes, and Hierarchy Editor menus
	Using the Classes menu
	Using the Edit Class command
	Using the Member Attributes command
	Using the Delete Member command
	Using the Go to Source command
	Using the Options command

	Using the Hierarchy Editor right-click menu
	Using the Class Attributes command
	Using the Remove Inheritance command
	Using the Go to Source command
	Using the View Imports command

	Using Macros in Visual Cafe
	Recording and playing the Default Macro
	To record the default macro:
	1 From the Tools menu, choose Macro, then Record M...
	2 Click OK.
	3 Perform the necessary actions that you want reco...
	4 When you are done creating your macro, choose To...

	To play the default macro:

	Saving the default macro and using it with other m...
	To save the default macro for later use:
	1 Record the macro. See the previous section, “Rec...
	2 Choose Tools, Macro, then ScriptMaker.
	3 Click the Rename... button.
	4 In the Rename/Duplicate Macro dialog box, enter ...
	5 Click the OK button.

	Using recorded macros other than the default macro...
	To run a macro other than the default one:

	Using the ScriptMaker dialog box
	Macros
	Properties
	Display in Menu
	Reorder Commands
	Done Button
	Edit Button
	Rename Button
	Duplicate Button
	Delete Button

	Including Visual Components
	What are Visual Cafe forms?
	Understanding the container class
	Working with basic user interface components
	Creating component layouts
	Working in the Form Designer
	Displaying graphics in the Form Designer
	Creating Java code

	Designing a GUI with Visual Cafe
	1 Add forms to the project.
	2 Add components to your forms
	3 Arrange components.
	4 Modify component properties.
	5 Create component interactions.
	Adding forms to the project
	To add a form using the Insert menu:
	1 While the project is selected, choose Form from ...
	2 Select a form template.
	3 Click OK.

	To add a form using drag-and-drop:

	Adding components to a form
	To add a component to a form:
	1 Add the component by using one of these methods:...
	2 Size the component.
	3 While the component is selected, type in a name ...
	4 Change component properties as needed.
	5 From the File menu, choose Save to save changes....

	Copying components
	To copy and paste a component:
	1 Open the project(s) you want to use.
	2 Click the Objects tab in the Project window, or ...
	3 From the Edit menu, choose Copy, or right-click ...
	4 If you want to paste the component within anothe...
	5 While the target Project window (Object tab), Fo...

	To copy and drag a component:

	Moving components between forms
	To move a component between forms:

	Deleting components from a form
	To delete a component:

	Changing components
	To change one component to another type of compone...

	Displaying invisible components
	To display or hide invisible components:

	Tabbing between fields on a form

	Arranging components on your forms
	To change the layout of a form:
	1 Display the Form Designer by double-clicking the...
	2 Open the Property List for a form or panel.
	3 Select a layout for the Layout property.
	4 Rearrange the components in the Form Designer, i...

	Using the layout manager of None
	Arranging components in BorderLayout
	To arrange components in BorderLayout:
	1 Choose BorderLayout for the Layout property of a...
	2 If components are already on the form or panel, ...
	3 In the Property List, choose the form or panel c...
	4 For each component you want to add, add the new ...
	5 Test your layout by running it at different form...

	Arranging components in CardLayout
	To arrange components in CardLayout:
	1 Choose CardLayout for the Layout property of a f...
	2 In the Property List, choose the form or panel c...
	3 If components are already on the form or panel, ...
	4 Add components as needed and rearrange them.
	5 Test your layout by running it at different form...

	Arranging components in FlowLayout
	To arrange components in FlowLayout:
	1 Choose FlowLayout for the Layout property of a f...
	2 In the Property List, choose the form or panel c...
	3 If components are already on the form or panel, ...
	4 Add components as needed and rearrange them.
	5 Test your layout by running it at different form...

	Arranging components in GridLayout
	To arrange components in GridLayout:
	1 Choose GridLayout for the Layout property of a f...
	2 In the Property List, choose the form or panel c...
	3 If components are already on the form or panel, ...
	4 Add components as needed and rearrange them.
	5 Test your layout by running it at different form...

	Arranging components in GridBagLayout
	To arrange components in GridBagLayout:
	1 Choose GridBagLayout for the Layout property of ...
	2 Rearrange and add components as needed. In the P...
	3 Press F1 on a Grid Bag Constraints property to g...
	4 Test your layout by running it at different form...

	Modifying component properties
	To modify a component’s properties:
	1 From the Window menu, choose Property List to di...
	2 Select a component in the Form Designer, Project...
	3 To edit a property, click the right column, doub...
	4 Press ENTER or click somewhere else to make the ...

	Creating component interactions

	Creating menus with the Menu Designer
	To open the Menu Designer:
	1 Double-click a MenuBar component in the Project ...
	2 In the Project window, select the MenuBar compon...

	Using the Menu Designer pop-up menu
	Adding a menu to a form
	To add a menu to a form:
	1 Click the MenuBar component in the Component Pal...
	2 Double-click on the menu bar object to open the ...

	Copying a menu
	To copy a menu:
	1 To open the Menu Editor, double-click the menu b...
	2 In the Menu Editor, click on the menu that you w...
	3 From the Edit menu, choose Copy.
	4 Open the target form and double-click the target...
	5 Select a location for the new menu. You can past...
	6 From the Edit menu, choose Paste.

	Adding a menu bar to a frame or dialog box
	To add a menu bar to a frame or dialog box:
	To open the Menu Designer:
	1 Double-click a MenuBar component in the Project ...
	2 In the Project window, select the MenuBar compon...

	Adding menus to a menu bar
	To add a menu to a menu bar:
	1 Do one of the following:
	2 In the Property List, set the menu properties, i...

	Adding menu items to menus
	To add a menu item to a menu:
	1 Do one of the following:
	2 In the Property List, set the menu item properti...

	Adding submenus to menu items
	To add a submenu to a menu item:
	1 In the Menu Designer, right-click a menu item an...
	2 While the submenu is selected, in the Property L...

	To add a CheckboxMenuItem component as a submenu:
	1 Drag it from the Component Library or Palette to...
	2 In the Project window or Menu Designer, select t...

	Editing a menu structure
	To move items in the menu structure:
	To delete a menu or menu item:

	Editing menu bars and menus
	To edit a menu or menu bar:
	1 Add a menu bar to the form, or if the menu bar a...
	2 Open the Property List by choosing Property List...
	3 Do either of the following:
	4 To add more menu items:
	5 Right-click on the menu item to display the pop-...
	6 Choose Create Submenu.
	7 Bind code to the appropriate menu items.
	8 Define any interactions by selecting the menu it...

	Associating command keys and menu items
	To associate a command key with a menu item:
	1 Select a menu item in the Project window or Menu...
	2 In the Property List, expand the Menu Shortcut p...
	3 Verify your command keys by running your Java pr...

	Binding code to a menu item
	To bind code to a menu item:
	1 Open the menu bar in the Menu Designer or Projec...
	2 Select the menu item.
	3 Choose Edit Source from the pop-up menu.
	4 In the Source window, select the Action event fr...
	5 Add the appropriate Java code to the event handl...

	Working with the Component Palette
	Using the InvisibleHTMLLink component
	To use the InvisibleHTMLLink component:
	1 In the Component Palette, click Additional, then...
	2 In the Property List, double-click the HTML Link...
	3 In the HTML Link URL dialog box, type the URL.

	Using the MultiList component
	To use the MultiList component:
	1 In the Component Palette, click Additional, then...
	2 Resize the new MultiList component as needed.
	3 In the Property List, click the Column Headings ...
	4 Click the List Items property, then type the lis...
	5 Optionally set the Heading and Cell properties t...

	Using the ScrollingPanel container
	To set up a ScrollingPanel container:
	1 In the Component Palette, click Panels, then cli...
	2 Resize the new ScrollingPanel component to be th...
	3 Design another panel.
	4 Drag the other panel onto the ScrollingPanel.

	Using the TabPanel container
	To set up a TabPanel container:
	1 In the Component Palette, click Panels, then cli...
	2 Resize the new TabPanel component as needed.
	3 If the background color is white, you could set ...
	4 Drag panel components onto the TabPanel.
	5 In the Property List, choose the TabPanel compon...
	6 Type the tab labels. Press CTRL+ENTER between la...
	7 If you want the tabs to appear on the bottom rat...
	8 To add components to a panel contained by a TabP...

	Using the TreeView component
	To use the TreeView component:
	1 In the Component Palette, click Utility, then cl...
	2 Resize the new TreeView component as needed.
	3 In the Property List, click the Items property, ...
	4 Look through the hierarchy in the Form Designer,...

	Building a custom Palette
	Creating a Palette tab
	To create a Palette tab:
	1 Click the Component Library window.
	2 From the Insert menu, choose Group.
	3 Edit the group item name and press Return to ent...
	4 Add your components to the new group folder.
	5 Drag the group to the Component Palette. A new T...

	Adding components to the Palette
	Adding Palette objects from the Component Library
	To add objects to the Palette from the Component L...

	Adding Palette objects from the Project window
	To add Palette objects from the Project window:
	1 Select the object.
	2 Drag and drop the object onto the tab of the Pal...

	Adding Palette objects from the Component Palette ...
	To customize your Palette from the Component Palet...
	1 From the Tools menu, choose Environment Options,...
	2 Do either of the following:

	Moving Palette components
	To move Palette components:
	1 Hold down the Control key.
	2 Click the component you want to move.

	Deleting components from the Palette
	Deleting a component from the Palette:
	1 Click an object on the Palette.
	2 Right-click and select Remove Component.

	Deleting a component from the Environment Options ...
	1 From the Tools menu, choose Environment Options ...
	2 Select the object to delete from the Palette Pan...
	3 Click Remove or press the DELETE key.

	Working with the Component Library
	To add a custom component to the Component Library...
	1 Create the component class Java file (.class).
	2 Create a description file for the component (.de...
	3 Create a small icon for the component (.ico).
	4 Add the icon and description files to your Visua...
	5 Make sure the class file is in the location you ...
	6 Optionally add the compiled component class to a...
	7 Display the Component Library by choosing Window...
	8 From the Insert menu, choose Component into Libr...
	9 Select the class file, then click Open.
	10 Select a group, then click OK.

	To delete an object from the Component Library:
	1 In the Component Library, select the object to b...
	2 From the Edit menu, choose Cut (or press the DEL...

	Viewing a component’s Java source
	To view a component’s Java source:
	1 Do either of the following:
	2 In the Source window, add your custom code to th...

	Compiling, running, and deploying your program
	Introduction
	Concepts of applets and applications
	Applets
	Advantages and disadvantages
	Applet limitations

	Applications

	Compiling and running
	Setting compiler options
	To set compiler options:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Com...
	4 Select the options you want:
	5 Click OK.

	Correcting your source code
	1 From the Window menu, choose Messages to bring t...
	2 Double-click on any error message to go to that ...

	Deploying Java programs
	Deploying your applet
	To deploy your applets in a JAR:
	1 Use the Project JAR command to create a JAR file...
	2 Add the variable ARCHIVE="name.jar" to the apple...
	3 On your local computer, test your Web pages by o...
	4 Put your JAR file and HTML files in a directory ...
	5 After completing the setup of your Web site, tes...

	To deploy your applets outside of a JAR:
	1 Use the JAR command under the Project menu to cr...
	2 Create a new directory for your deployment files...
	3 Expand the JAR file into the new directory. See ...
	4 Copy the HTML files for your Web pages into the ...
	5 On your local computer, test your Web pages by o...
	6 Put your files in a directory on the Web server,...
	7 After completing the setup of your Web site, tes...
	1 Create a deployment directory on your local comp...
	2 Put all of your applet class files, HTML files, ...
	3 Enable your applet to access the class files it ...
	4 On your local computer, test your Web pages by o...
	5 Put your files in a directory on the Web server,...
	6 After completing the setup of your Web site, tes...

	Including your applet in a Web page
	HTML, Java, and the World Wide Web
	Viewing and editing HTML files
	To edit an HTML file:
	1 Open the file by using one of these methods:
	2 In the Source window, make any necessary edits.
	3 Save the file (from the File menu, choose Save)....

	Adding an applet to an HTML page
	Passing parameters to applets from the HTML file

	Deploying your application
	To deploy your application in a JAR:
	1 Use the JAR command under the Project menu to cr...
	2 On your local computer, test your application by...
	3 Test your application from remote computers. You...

	To deploy your application outside of a JAR:
	1 Use the JAR command under the Project menu to cr...
	2 Create a new directory for your deployment files...
	3 Expand the JAR file into the deployment director...
	4 On your local computer, test your application by...

	To run your application, type at the DOS command l...
	5 Test your application from remote computers. You...
	1 Create a deployment directory on your local comp...
	2 Put all of your application class files and othe...
	3 Enable your application to access the class file...
	4 On your local computer, test your application by...

	To run your application, type at the DOS command l...
	5 Test your application from remote computers. You...

	Determining what class files an applet or applicat...
	Using the JAR command to get the class files your ...
	Using SJ to determine what class files your Java p...

	Configuring UNIX-based Web servers
	To configure a UNIX-based Web server:
	1 Create a UNIX directory, such as /home/symantecc...
	2 Copy the Symantec directory, including all subdi...
	3 Create a symbolic link from /home/symantecclasse...

	Building your Java program
	Building your project with commands in the Project...
	Execute
	Run in Debugger
	Step into
	Build Applet/Application
	Compile
	Parse All

	Messages window

	Working with JavaBeans
	JavaBeans and Java
	JavaBean terminology
	Basic JavaBean structure
	The JavaBeans services
	Property management
	Accessor methods
	Indexed properties
	Bound and constrained properties

	Introspection
	Reflection and design patterns
	Explicit Bean information
	The Introspector

	Event handling
	Unicast and multicast event sources
	Event adapters

	Persistence
	Bean storage

	Application builder support
	Property editors and sheets

	Creating a Bean
	Bean design fundamentals
	What does the Bean do?
	How is the Bean used?
	How might the Bean be modified?
	What kind of Interface does your Bean need?

	Testing your Bean

	Adding and using Beans in Visual Cafe
	Using JAR files
	Creating a JAR file
	To create a JAR file:
	1 While the project you want to work with is activ...
	2 In the JAR name field, type the name and full pa...
	3 Click More to display the files and set options ...
	4 Select a file to specify options for it:
	5 Click OK to create the JAR.

	Expanding a JAR file

	Converting components (description files) to JavaB...
	To convert a component to a Bean:
	1 Run the Description File Converter.
	2 Click the Location tab.
	3 In the Description File Directory field, specify...
	4 If the component icons are with the description ...
	5 In the Output Directory field, specify the full ...
	6 Select relative or absolute.
	7 Click the Selection tab and select the files you...
	8 From the File menu, choose Convert.

	Adding a JavaBeans component to the Component Libr...
	To add a JavaBean to the Component Library:
	1 Make sure the component class or JAR file is in ...
	2 Display the Component Library by choosing going ...
	3 From the Insert menu, choose Component into Libr...
	4 Select the class or JAR file, then click Open.
	5 For a class file, select a group, then click OK....
	6 If you want to add the component to the Componen...

	Creating a JavaBean component
	1 Create a new project for developing one or more ...
	2 If you are converting a custom component that ha...
	3 Create the Bean according to the JavaBeans stand...
	4 Optionally add to the BeanInfo some information ...
	5 To package the Bean(s) in a JAR file, choose JAR...
	6 To use and test the Bean within the Visual Cafe ...

	Adding Visual Cafe information to a JavaBean
	SymantecBeanDescriptor
	ConnectionDescriptor
	Code samples

	Adding JavaBeans to the Component Library
	To add a JavaBeans component to the Component Libr...
	1 Make sure the component class or JAR file is in ...
	2 Choose Insert Component into Library. This menu ...
	3 Select the class or JAR file, then click Open.
	4 For a class file, select a group, then click OK....

	Deleting JavaBeans from the Component Library
	To delete a JavaBean from the Component Library:
	1 In the Component Library, select the object to b...
	2 From the Edit menu, choose Cut; or press the DEL...

	Viewing and changing JavaBean properties
	To modify JavaBean properties:
	1 To display the Property List, Go to the Window m...
	2 Select a component in the Form Designer, Project...
	3 To edit a property, click the right column, doub...
	4 Press ENTER or click somewhere else to make the ...

	Packaging and deploying JavaBeans
	Visual Cafe’s tools for building Beans
	Bringing Beans into the Visual Cafe environment
	BeanInfo for standard AWT components

	Bean associates
	Appearance
	Renaming a Bean
	Hierarchical properties
	Internationalization properties

	Debugging Java Programs
	Using the Debug workspace
	Overview of the Breakpoints window
	Overview of the Variables window
	Overview of the Watch window
	Overview of the Threads window
	Overview of the Call Stack window
	Overview of the Messages window
	Overview of the Source window

	Running the Debugger
	Starting a debugging session
	To start a debugging session:
	1 Open the project that you want to debug.
	2 From the Project menu, choose Run in Debugger (o...

	Scrolling in the Source Editor
	To scroll to a specific line in your code:
	1 From the Object menu, choose Edit Source to open...
	2 From the Debugger’s Search menu, choose Go To Li...
	3 When the dialog box is displayed, type the numbe...
	4 Click OK.

	Using the Debug toolbar

	Stepping through code
	To step through code:
	Pausing a program
	Stopping a program
	To stop debugging a program:

	Stepping into a method
	Using Debug > Step Into
	Stepping over a method
	Using Debug Step Over
	Stepping out of a method
	Toggling a breakpoint
	To toggle a breakpoint in the Source window:
	1 Click on the line where you want to toggle the b...
	2 Click on (Toggle Breakpoint) the Breakpoint to t...

	Watching a variable
	To watch a variable from the Watch menu:
	1 From the Window menu, choose Watch to open the W...
	2 Type a variable name or an expression directly i...

	To watch a variable from the Variables window:
	1 Right-click on the variable you want to watch.
	2 Choose Watch Variable from the context menu.

	To move through a block of code quickly:
	1 Select a line.
	2 From the Debug menu, choose Continue to Cursor.

	Running to the first line
	To run to the first line of the program:

	Running the program to the end
	To run to the end of the program:

	Running to the cursor location
	To run to the cursor location:

	Resuming a program
	To resume debugging a program:

	Restarting a program
	To restart debugging a program from the beginning:...

	Handling exceptions
	Throwing exceptions
	Catching exceptions

	Setting exceptions in Visual Cafe
	To prepare to handle exceptions:
	1 From the Project menu, choose Options.
	2 In the dialog box that appears, click the Debugg...
	3 Choose how you want to handle exceptions, and ad...

	To make all exceptions break into the Debugger:
	1 Select the exception in the list.
	2 Click in the Action column.
	3 Click the down-arrow button and choose Stop Alwa...

	To make only unhandled exceptions break into the D...

	Changing source code
	To navigate to each error from the Messages window...
	1 From the Window menu, choose Messages to bring t...
	2 Double-click on any error message to go to that ...

	Using the Source window

	Working with breakpoints
	Setting a breakpoint on a line number
	Setting simple breakpoints
	To set a simple breakpoint:
	1 Do either of the following:
	2 From the Source menu, choose Set Conditional Bre...
	3 In the Break at panel, click on Line Number.
	4 Enter a line number in the text box.
	5 Click OK.

	Setting a breakpoint on a method name
	To set a breakpoint on a method name:
	1 From the Source menu, choose Set Conditional Bre...
	2 In the Break at panel, click on Method Name.
	3 Enter a method name in the text box.
	4 Click OK.

	Setting a breakpoint on a variable or expression
	To set a breakpoint on a variable or expression:
	1 From the Source menu, choose Set Conditional Bre...
	2 In the Break panel, click on When Expression Is ...
	3 Enter a Boolean expression into the text box.
	4 Click OK.

	Setting a conditional breakpoint
	To set a conditional breakpoint:
	1 In the Source Code window, click on the line whe...
	2 From the Source menu, choose Set Conditional Bre...
	3 Click When Expression Is true.
	4 Type your breakpoint condition into the text box...
	5 Click Add.

	Modifying a conditional breakpoint
	To modify a conditional breakpoint:
	1 Choose Breakpoints from the Window menu to displ...
	2 Click on the Condition field of the breakpoint y...
	3 Type the new condition into the Condition field....
	4 Press ENTER to save the change.

	Clearing breakpoints
	To clear a breakpoint at a line of source code:
	1 Select the breakpoint by clicking in the line wh...
	2 From the Source menu, choose Clear Breakpoint.

	To clear a breakpoint from the Breakpoints window:...

	Enabling or disabling a breakpoint
	To enable a breakpoint:
	To disable a breakpoint:
	To toggle a breakpoint using the spacebar:

	Ignoring all breakpoints
	To ignore all breakpoints by running to program en...
	To ignore all breakpoints by running to the cursor...

	Viewing the source for a breakpoint
	To view the source for a breakpoint:
	1 From the Window menu, choose Breakpoints to open...
	2 Click on the breakpoint for which you want to se...
	3 From the Breakpoint menu, choose Go to Source.

	Stepping through code when the program is paused
	Step Into
	Step Over
	Step Out

	Using the Variables window
	Viewing the value of a variable
	To view the value of a variable:
	1 From the Window menu, choose Variables.
	2 Click on the variable you want to view.
	3 To expand an object to see its contents, click t...

	Viewing type information for a variable
	To view type information for a variable:
	1 From the Variables menu, choose Watch.
	2 Click on the variable whose type you want to vie...

	Modifying a variable in the Variables window
	To modify a variable in the Variables window:
	1 From the Window menu, choose Variables > Watch.
	2 Click on the variable you want to change.
	3 Click in the Value column.
	4 Type the new value in the Value box.
	5 Press ENTER to save the change.

	Using expressions in the Watch window
	Adding a variable to the Watch window
	To add a variable from the Watch window:
	1 From the Window menu, choose Watch to display th...
	2 Press ENTER to save or ESCAPE to leave the item ...

	To add a variable from the Variables window:
	1 Right-click on the variable you want to watch.
	2 Choose Watch, then Variable from the context men...

	Modifying a variable or expression in the Watch wi...
	To locate the variable you want to modify:
	1 From the Window menu, choose Watch.
	2 Click on the variable or expression you want to ...

	To change the value of a variable:
	1 Click in the Value field.
	2 Type the new value in the Value box.

	To change the variable or expression to watch:
	1 Click in the Watch field.
	2 Edit the variable or expression.
	3 Press ENTER to save the change.

	Deleting a variable or expression from the Watch w...
	To delete a variable or expression:
	1 From the Window menu, choose Watch.
	2 Click on the variable or expression you want to ...
	3 Press DELETE.

	Using the Call Stack window
	Viewing parameters for a method on the Call Stack ...
	To open the Call Stack window:
	To view parameter types:
	To view parameter values:
	1 From the Calls menu, choose View Parameter Value...
	2 Enter the number of items in the array and the b...
	3 Click OK.

	Viewing variables for a method on the call stack
	To view the variables on the call stack:
	1 From the Window menu, choose Call Stack to open ...
	2 Click on the Method whose variables you want to ...
	3 From the Calls menu, choose Go to Variables.

	Viewing source for a method on the call stack
	To view the source for a method on the call stack:...
	1 From the Window menu, choose Call Stack to open ...
	2 Click on the Method whose code you want to view....
	3 From the Calls menu, choose Go to Source.

	Ending a debugging session
	To end a debugging session:

	Debugging threads
	Using the Threads window
	Debugging a single thread
	To debug a single thread:
	1 From the Window menu, choose Threads to open the...
	2 Click the thread you want to work on.
	3 From the Threads menu, choose Set Focus.
	4 Continue debugging that thread in the Call Stack...

	Suspending a thread
	To suspend a thread:
	1 From the Window menu, choose Threads to open the...
	2 Click the thread you want to suspend.
	3 Choose the Thread, then Suspend.

	Resuming a suspended thread
	To resume a suspended thread:
	1 From the Window menu, choose Threads to open the...
	2 Click the thread you want to resume.
	3 From the Threads menu, choose Resume.

	Suspending other threads
	To suspend other threads:
	1 From the Window menu, choose Threads to open the...
	2 Click the thread you want to want to work on.
	3 From the Threads menu, choose Suspend Others.

	Resuming other suspended threads
	To resume other suspended threads:
	1 From the Window menu, choose Thread to open the ...
	2 Click the thread you do not want to resume.
	3 From the Threads menu, choose Resume Others.

	Viewing the source code for a selected thread
	To view the source code for a selected thread:
	1 From the Window menu, choose Thread to open the ...
	2 Click the thread you want to focus on.
	3 From the Threads menu, choose Set Focus.
	4 Display the Source window.

	Viewing the active variables in a thread
	To view the active variables in a thread:
	1 From the Window menu, choose Threads to open the...
	2 Click the thread you want to focus on.
	3 From the Threads menu, choose Set Focus.
	4 From the Window menu, choose Variables.

	Viewing the call stack for a thread
	To view the call stack for a thread:
	1 From the Window menu, choose Threads to open the...
	2 Click the thread whose call stack you want to vi...
	3 From the Threads menu, choose Set Focus.
	4 From the Window menu, choose Call Stack.
	5 Click on the Method whose code you want to view....

	Debugging remotely
	Setting up for remote debugging
	To configure the local and remote machines:
	1 Visual Cafe or Visual Cafe Pro must be installed...
	2 The TCP/IP networking protocol must be installed...
	3 Identical copies of the project, including all s...

	Starting remote applets or application debugging
	To debug an applet or application remotely:
	1 Open a console session (DOS window) on the remot...
	2 On the machine that is running the Debugger, loa...
	3 From the Project menu, choose Options.
	4 If you are remotely debugging an applet, from th...
	5 From the Debugger tab, choose General from the C...
	6 Check Enable Remote Debugging and enter the Host...
	7 Click OK.

	Ending remote applets or application debugging

	Using Debugger-specific menus
	Overview of the Project menu
	Overview of the Debug menu
	Overview of the Insert menu
	Overview of the Breakpoints menu
	Overview of the Variables menu
	Overview of the Threads menu
	Overview of the Calls menu
	Overview of the Source menu
	Overview of the Window menu

	Fine-Tuning Visual Cafe
	Setting environment options
	Setting environment options in the General tab
	Defining the Visual Cafe startup mode
	To establish the startup mode:
	1 From the Tools menu, choose Environment Options,...
	2 In the On Startup area, select the appropriate o...

	Finding Java source files
	To specify the project path:
	1 From the Tools menu, choose Environment Options,...
	2 In the Look for source files in path field, type...

	Defining the Help file set
	To define the Help file set:
	1 From the Tools menu, choose Environment Options,...
	2 In the Help Files field, enter the hlp file name...

	Setting debugging options for the environment
	The Run-Time Editing option group
	The Tips option group
	To enable or disable ValueTips at debug time:
	1 Select or clear the Enable ValueTips option.
	2 If selected, set the delay time before a tip dis...

	The Switch to Debug workspace on Run option

	Specifying text formatting for Visual Cafe windows...
	To set format options for files with a certain ext...
	1 Choose the file extension you want to customize....
	2 Set the options you want to apply to files with ...

	To specify custom keywords:
	Using the Enter New File Extension dialog box
	Using the Custom Keywords dialog box

	Mapping Visual Cafe commands to key sequences
	To access the Environment Options Keyboard view:
	To choose a key file to use in the Visual Cafe env...
	To delete a key file:
	To map a command to a key sequence:
	1 Choose a key file.
	2 From the command list, select a command.
	3 To specify a key assignment, click in the New Ke...
	4 Assign the key sequence to the command by clicki...
	5 To save the settings to a file, click Save.

	To delete the key assignment for a command:
	To copy the command assignment list as text:
	To modify what commands are shown:
	To specify key editing options for the Source wind...

	Specifying key editing options for the Source Edit...
	To specify editing options:
	1 From the Tools menu, choose Environment Options,...
	2 Click More.
	3 Select the options you want:

	Using the Save Key Bindings dialog box

	Customizing the display font and color in Visual C...
	To access the Environment Options Display view:
	To set the font or font size:
	1 In the Category list box, select the item whose ...
	2 Choose a value for font or font size.

	To set the color and style:
	1 In the Category list box, select the item whose ...
	2 Select an item in the Color & Styles list box, t...

	Specifying backup and save options
	Saving files for recovery purposes
	To establish file saving:
	1 From the Tools menu, choose Environment Options,...
	2 Select Save Automatically and choose a time inte...

	Automating source file backups
	To automate project backups:
	1 From the Tools menu, choose Environment Options,...
	2 Select Backup files on Save.
	3 Select the location and name of the backup files...

	Setting the scope of the Undo command
	To set the scope of the Undo command:
	1 From the Tools menu, choose Environment Options,...
	2 In the Save actions for undo field, enter the nu...

	Specifying code editing options
	To access the Environment Options Editing view:
	Controlling the cursor style
	Setting the cursor style
	To set the cursor style for the insert and overwri...
	1 From the Tools menu, choose Environment Options,...
	2 In the Insert or Overwrite definition area, sele...
	3 Select the cursor style: Block, Underline, or Ve...

	To show horizontal scroll bars:

	Controlling toolbar position and visibility
	To float a toolbar:
	1 Drag the toolbar from the top of the Visual Cafe...
	2 Double-click somewhere in the toolbar background...

	To dock a toolbar:
	1 Drag the toolbar to the top of the Visual Cafe w...
	2 Double-click somewhere in the toolbar background...

	To hide or show a toolbar:
	1 Right-click at the top of the Visual Cafe window...
	2 Click the close box on the toolbar.

	Enabling ValueTips
	To enable ValueTips:
	1 From the Tools menu, choose Environment Options....
	2 Click the Debugging tab.
	3 Select or clear the Enable Value Tips option.
	4 If selected, set the delay time before a tip dis...

	Customizing Class Browser and Class Hierarchy wind...
	To customize Class Browser and Class Hierarchy win...
	1 From the Tools menu, choose Environment Options,...
	2 In the Class Browser and Class Hierarchy area, s...

	Changing editor properties
	To make local changes (local to an editing session...

	Updating Visual Cafe with LiveUpdate
	Using LiveUpdate over the Internet
	Using LiveUpdate with your modem
	Configuring your modem
	Identifying your modem
	Configuring your modem INIT string
	Selecting the COM port
	Selecting dialing parameters

	Troubleshooting a LiveUpdate connection

	Uninstalling LiveUpdate upgrades
	Using LUCLEAN.EXE
	To run LUCLEAN.EXE:
	1 Open a DOS session window
	2 Switch to the Visual Cafe directory
	3 Type LUCLEAN.EXE /LU
	4 Restart your computer and run LiveUpdate again.

	Troubleshooting Visual Cafe for Windows
	Limitations of the Java language
	Java and case sensitivity
	Hardware limitations

	Common programming errors
	Compiler errors
	Using Visual Cafe to locate compiler errors
	Cross-platform considerations
	Visual Cafe cross-development
	Browser issues

	When do you have to write your own code?
	Event handling
	Disabling automatic code generation in Visual Cafe...
	Disabling code that is automatically generated
	How to tell when your Visual Cafe environment beco...
	To restore your Visual Cafe environment back to it...
	1 Quit Visual Cafe.
	2 In the VisualCafe\Bin directory delete the files...
	3 Restart Visual Cafe.

	Professional Features
	10

	Creating Native Win32 Java Applications
	Creating native executables and DLLs
	1 Create a new project.
	2 Design the user interface.
	3 Enhance Java source code.
	4 Set project options.
	5 Test run the application or DLL in Visual Cafe.
	6 Debug the application or DLL , if needed.
	7 Test run the application or DLL outside of Visua...
	8 Deploy the application or DLL.
	9 (Optional) Register the DLL using SNJREG.EXE, if...
	Setting project options for native applications
	Specifying the name of a native application or DLL...
	To specify the name of a native executable or libr...
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Set the Project Type field to Win32 Application ...
	5 Enter the executable or library file name in the...
	6 Click OK.

	Specifying a program for running and debugging a D...
	To specify an executable file for running or debug...
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Set the Project Type field to Win32 Dynamic Link...
	5 Type the name of the executable in the Calling p...
	6 Click OK.

	Specifying a class or package to be exported
	To specify a class or package to be exported:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Com...
	4 Set the Compiler Category to Exports (Win32 only...
	5 Choose the classes or packages you want to make ...
	6 Click OK.

	Specifying advanced Win32 compiler options
	To specify a class or package to be exported:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Com...
	4 Set the Compiler Category to Advanced.
	5 Click the checkboxes of the items you want to se...
	6 Click OK.

	Including library files to be compiled in the main...
	To include import library files:
	1 Activate the Project window of the project you w...
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Com...
	4 Set the Compiler category to Libraries (Win32 on...
	5 Add the library file.
	6 Click OK.

	Making a library file available to a project
	To set the directory:
	1 Activate the Project window of the project you w...
	2 From the Project window, choose Options.
	3 In the Project Options dialog box, click the Dir...
	4 Set the Show Directories for Option field to Lib...
	5 Select from the list of directories available or...
	6 Click OK.

	Registering DLLs using SNJREG
	To register a package in a DLL file using SNJREG:
	1 Open a DOS Window.
	2 Change to the directory where the DLL files are ...
	3 Enter:

	Debugging Native Win32 Java applications
	Deploying native Win32 applications, DLLs and libr...

	Converting Java applications from bytecode to nati...
	To convert your bytecode Java application to nativ...
	1 Open the project you want to convert.
	2 From the Project menu, choose Options.
	3 In the Project Options dialog box, click the Pro...
	4 Change the Project Type field to Win32 Applicati...
	5 Click OK.

	Considerations when creating native Win32 Java app...
	Linking native Java applications
	The main class in bytecode and native applications...

	Working with samples of native applications
	Example of creating an executable file
	To create a Win32 executable file:
	1 Create a new project by choosing New project fro...
	2 Create a source file called Main.java that conta...
	3 Add a second source file called Hello.java with ...
	4 Delete the file SimplCon.java.
	5 From the Project menu, choose Options, and using...
	6 Compile and execute the application by choosing ...
	7 Save the project to new directory called simple....

	Example of creating an executable with a DLL
	To create an executable and a DLL file:
	1 Save the Simple project to a new name and direct...
	1 Create a project for a DLL by choosing New Proje...
	2 Add Hello.java from the Simple directory to the ...
	3 Save the project to a new directory called Simpl...
	4 Set the project options for the DLL by choosing ...
	5 Make the Hello class exportable. See “Specifying...
	6 Build the project to generate Hello.lib and Hell...

	To add the DLL to the Simple3 project:
	1 Create a new WIn32 application project.
	2 Delete all files from the project and add Main.j...
	3 From the Project menu, choose Options, and using...
	4 From the Insert menu, choose Files into Project....
	5 Select simple2.vep and click Add.
	6 Click OK to add the VEP file to the project.
	7 Save the project as Simple3 in a new directory c...
	8 Make Hello.lib a recognized library file. See “I...
	9 Build the simple3 project and execute.

	Incremental Debugging and Importing Projects
	Incremental debugging
	Importing projects from Cafe
	To import a project:
	1 From the File menu, choose Open.
	2 Choose Cafe projects as the file type.
	3 Locate the correct directory and select the proj...
	4 Click OK.

	Importing Visual J++ projects into Visual Cafe
	To import a project through the dsw workspace file...
	1 From the File menu, choose Open.
	2 Choose Visual J++ Workspace Files in the Files o...
	3 Locate the directory that contains the dsw file ...
	4 Select the dsw file from the list, then click Op...
	5 If there is more than one project in the workspa...
	6 If you have more than two configurations defined...
	7 Review the Visual Cafe project options and chang...
	8 If the Visual J++ project was in a different dir...

	To import a project through the dsp project file:
	1 From the File menu, choose Open.
	2 Choose Visual J++ Workspace Files in the Files o...
	3 Locate the directory that contains the dsp file ...
	4 Select the dsp file from the list, then click Op...
	5 If you have more than two configurations defined...
	6 Review the Visual Cafe project options and chang...
	7 Save your new project.

	Considerations when importing Visual J++ projects

	Database Connectivity
	Developing a dbAWARE project
	Overview
	Setting the Database Environment Options
	To use the Database Environment Options dialog box...
	1 Choose Environment Options from the Tools menu.
	2 Click on the Database tab of the Environment Opt...

	About the dbAWARE components
	The AutoDetail Component
	ConnectionInfo object
	SQL select statement and join
	Cardinality
	Parent RelationView

	The ConnectionInfo component
	The Grid component
	The MultiView component
	The Projection component
	The RelationView component
	The Session component

	About the database browser, dbNAVIGATOR
	The dbAWARE wizards
	Database manipulation functions

	Creating a dbAWARE project
	Starting dbANYWHERE
	To start dbANYWHERE from the Windows 95 platform:
	To start dbANYWHERE from a command line:
	1 Execute the a statement on your command line in ...
	2 Determine the URL for connecting to the dbANYWHE...

	Creating the database for your project
	To create a database using the Create Database wiz...
	1 From the Start menu, choose Programs > Sybase SQ...
	2 Open the Database Utilities folder.
	3 Double-click on Create Database.
	4 Click Browse to set up a location for your new d...
	5 Click Next.

	Defining your data source
	To create a data source using the dbANYWHERE DataS...
	1 If you do not have an existing database, see the...
	2 From the Start menu, choose Programs > Symantec ...
	3 Choose the appropriate database driver for your ...
	4 Fill in the fields.

	To add a data source using the ODBC Administrator:...
	1 From the Start menu, choose Programs > Sybase SQ...
	2 Click Add to create a new data source.
	3 Select the appropriate database driver (for your...
	4 Click Finish.
	5 Click the Browse button to locate your database....

	Using the dbAWARE project wizard
	To start the Project wizard:
	1 Choose New Project from the File menu.
	2 Double-click on the dbAWARE Project Wizard to op...
	3 Click Next. The Project Type wizard screen opens...

	Setting up your project as an applet or applicatio...
	To set your project as an application or applet:
	1 Choose applet or application from the Project Ty...
	2 Click Next.

	Selecting the dbANYWHERE server for your project
	To identify your server:
	1 Type a name for your server or choose a name fro...
	2 Leave the Host Name or IP Address and the Port N...
	3 Click Next.

	Identifying the data source
	To identify the data source to use in your project...
	1 Choose a name from the Data Source Name drop-dow...
	2 Log on to your server, if necessary.
	3 Click Next.
	4 Fill in the User name and Password fields. For a...
	5 If the database was not created by you, click on...

	Selecting tables
	Choosing database columns for your application to ...
	To select a database column:
	1 Click the column’s check box.
	2 Click Next.

	Selecting the components to apply to your table
	To change a column type:
	1 Click on the component in the Component field.
	2 Choose a component from the drop-down list.

	To change a label:
	1 Click on the text in the Label column.
	2 Enter the new text.
	3 If you don’t want the component to have a label,...
	4 Click Next.

	Adding database function buttons to a form
	To select database buttons for your form:
	1 Click the checkbox for each action you want enab...
	2 Click Next.

	Reviewing your project settings

	Using the Add Table wizard
	To add a new table using the Add Table wizard:
	1 From the Insert menu, choose Add Table Wizard.
	2 From the dbANYWHERE Server drop-down menu, selec...
	3 From the Data Source Name drop-down menu, select...
	4 Click Next.
	5 Choose a Database Table from the list displayed ...
	6 Click Next.
	7 From the Database Columns list, click on the pho...
	8 Click Next.
	9 Leave the default values in the Component and La...
	10 Click Next.
	11 Select the Previous and Next actions in the “Ch...
	12 Click Next.
	13 From the Project menu, choose Execute.
	14 Click either the Prev or Next buttons to see th...

	Using dbNAVIGATOR in form development
	Connecting to a server using dbNAVIGATOR
	To connect to the dbANYWHERE server using dbNAVIGA...
	1 Choose Window > dbNAVIGATOR.
	2 If you display dbNAVIGATOR and it is empty, Visu...
	3 Use the dbANYWHERE Server dialog box to connect ...

	Connecting to a database
	To connect to a database:
	1 Install the Sybase SQL Anywhere 5.0 product, if ...
	2 Start and connect to your dbANYWHERE server.
	3 Click the plus sign next to the SQL Anywhere 5.0...
	4 Enter the default User name and Password values,...
	5 Click OK.

	Adding a dbAWARE text field to a form
	To add a TextField, which is associated with a dat...
	1 In dbNAVIGATOR, expand the desired server’s data...
	2 Click the plus sign in the dbNAVIGATOR window to...
	3 Expand the object list for the table that contai...
	4 Drag the appropriate column item to the Form Des...
	5 Position and size the Text field and label as ne...

	Refreshing dbNAVIGATOR
	1 From the Window menu, choose dbNAVIGATOR.
	2 Select a data source by clicking on a DataSource...
	3 Right-click to display the dbNAVIGATOR contextua...
	4 Choose Refresh from the menu.

	Adding a database grid component
	To use dbNAVIGATOR to add a grid component:
	1 Drag a table name from the dbNAVIGATOR window on...
	2 Select the Grid component from the Component Pal...
	3 Size the Grid component, as needed.
	4 Adjust the column widths by positioning the curs...
	5 Set the Grid component’s RelationView property t...
	6 Run the form by choosing Execute from the Projec...

	Disconnecting from a database
	To disconnect from a data source:
	1 Choose Window > dbNAVIGATOR.
	2 Choose a data source by clicking on a DataSource...
	3 Right-click to display the dbNAVIGATOR pop-up me...
	4 Choose Disconnect.

	Changing grid attributes
	Changing foreground and background cell colors
	Changing cell fonts
	Changing Grid column attributes
	Protecting grid sections
	Changing Column Headings
	Changing Column Alignment
	Defining automatic Grid row numbering
	Defining automatic Grid redraw
	Modifying the Grid toolbar

	Using dbANYWHERE
	About dbANYWHERE
	What is dbANYWHERE?

	How the dbANYWHERE architecture works
	Configuring dbANYWHERE
	One machine for local databases
	Two machine configuration for remote databases
	Two machine configuration for local and remote dat...
	Three machine configuration

	Using the dbANYWHERE packages
	Using the dbANYWHERE packages for development
	To set up the packages on your development system:...
	1 Copy the .zip files to the development machine.
	2 Modify your CLASSPATH environment or application...
	3 Modify the program’s CLASSPATH statement in sc.i...
	4 Add the pathnames for the dbANYWHERE files sql.z...

	Setting up the dbANYWHERE packages for a deployed ...
	To set up the dbANYWHERE packages as unzipped file...
	1 Copy the files to the directory of your applet o...
	2 Unzip the files and delete the .zip files. Retai...

	Configuring dbANYWHERE as a Windows NT service (Wi...
	To install the dbANYWHERE Windows NT service:
	1 Start the dbANYWHERE Service Manager. To do this...
	2 Go to the Options menu and select Install as Ser...
	3 Click OK.
	4 The dbANYWHERE service is now installed.

	To configure the dbANYWHERE Windows NT service:
	1 If not already running, start the dbANYWHERE Ser...
	2 From the Options menu, choose Properties.
	3 If desired, select Autostart on System Boot. Oth...
	4 Set the log-on values. For an ODBC-enabled datab...
	5 Change other settings as needed. These are the s...
	6 Restart the server for the changes to take effec...

	Running the service
	Viewing messages
	To view these messages:
	1 Start the Event Viewer. To do this, double-click...
	2 Choose the application log. When you do this, Ev...
	3 To get more information about a specific message...

	Connecting to a data sources
	Connecting to a Sybase SQL Anywhere and Watcom dat...
	To connect to Sybase SQL Anywhere by means of JDBC...
	1 Make sure you have access to Sybase SQL Anywhere...
	2 Make sure you have access to the Sybase SQL Anyw...
	3 Use the Windows Control Panel ODBC32 Administrat...
	4 Set the URL, as shown in the following examples....

	Connecting to an Informix data source
	To connect to an Informix data source:
	1 Install the Informix SQL Server 32-bit client so...
	2 Set the URL.

	Connecting to Microsoft Access data source by mean...
	To connect to Microsoft Access data source by mean...
	1 Make sure you have Microsoft Access and the Micr...
	2 From the Start menu, choose Programs, then Sybas...
	3 Create and install an ODBC Data Source for the d...
	4 Set the URL, as shown in the following example.

	Connecting to an ODBC SQL-based data source by mea...
	To connect to an ODBC SQL-based data source:
	1 Install the third-party 32-bit ODBC driver pack ...
	2 Install an ODBC Data Source on the dbANYWHERE Se...
	3 Install client software on the dbANYWHERE Server...
	4 Set the URL, as shown in the following example.

	Connecting to an ODBC Xbase data source by means o...
	To connect to an ODBC Xbase Data Source by means o...
	1 Install the third-party 32-bit ODBC driver pack ...
	2 Install an ODBC Data Source on the dbANYWHERE Se...
	3 Install client software on the dbANYWHERE Server...
	4 Set the URL, as shown in the example following.

	Connecting to Microsoft SQL data source by means o...
	To connect to a Microsoft SQL server:
	1 Install the Microsoft SQL Server 32-bit client s...
	2 Set the URL, as shown in the following example, ...

	Connecting to Sybase SQL data source by means of J...
	To connect to a Sybase SQL server:
	1 Depending on your client type, install the appro...
	2 Set the URL by using Sybase_NT or Sybase_Win95 a...

	Connecting to Oracle data source by means of JDBC
	To connect to an Oracle data source:
	1 Install the appropriate client software on the d...
	2 Set the URL according to the following examples....

	Testing a data source connection
	To test a data source connection using the Test Da...
	1 From the Help menu, choose Test Data Sources.
	2 Select a Data Source from the list. The list con...
	3 (Optional) Enter a user name and password. If yo...
	4 Click Test.
	5 After a few moments, the test displays the test ...

	To test a data source’s connection using the DataS...
	1 Start the Data Source Tool. See “Using the DataS...
	2 Select a Data Source from the Defined Data Sourc...
	3 Click Test.
	4 Click PRO API Test or JDBC API Test.

	To troubleshoot when a test fails:
	1 Check the Data Source’s user name and password.
	2 Check the Data Source URL.
	3 Check the Data Source’s information in the dbANY...

	Using the dbANYWHERE tools
	Using the DataSource tool
	To start the Data Source tool:
	Fields

	Editing the data source
	To change data source values:
	1 The dsntool.bat script must be running.
	2 Select a Data Source from the Defined Data Sourc...
	3 Enter or select a new value for each field you w...
	4 Click Save.

	To add a data source:
	1 Click New.
	2 Enter or select a value for each field.

	To delete a Data Source
	1 Select a Data Source from the Defined Data Sourc...
	2 Click Delete.

	Using the dbANYWHERE Admin tool
	To start dbANYWHERE Admin tool:
	1 Start dbANYWHERE.
	2 From the Options menu, choose Properties, then R...
	3 Select the Allow Remote Administration checkbox....
	4 From the Start menu, choose Programs, then dbANY...

	Connecting to a dbANYWHERE server
	To connect dbANYWHERE Admin to a dbANYWHERE server...
	1 Start dbANYWHERE Admin.
	2 From the File menu, choose Connect.
	3 Enter the IP address and port number of the dbAN...
	4 Click Connect.

	To disconnect dbANYWHERE Admin from a dbANYWHERE s...

	Checking dbANYWHERE server statistics
	To check your server statistics:
	1 Start dbANYWHERE Admin.
	2 Connect to a dbANYWHERE Server machine.
	3 From the View menu, choose Server Stats.
	4 Click Refresh.

	Fields

	Checking dbANYWHERE connections
	To check current connections to your server:
	1 Start the dbANYWHERE Admin.
	2 Connect to a dbANYWHERE server.
	3 From the View menu, choose Connections.
	4 Click Refresh.

	Fields

	Testing link performance
	To test link performance:
	1 Start the dbANYWHERE Admin tool.
	2 Connect to a dbANYWHERE server.
	3 From the View menu, choose Ping.
	4 Optional. Change the ping text, ping count, and ...
	5 Optional. Select the Results/Show checkbox.
	6 Click Ping.

	Fields

	Changing dbANYWHERE properties
	To change dbANYWHERE properties:
	1 Start dbANYWHERE or the dbANYWHERE Service Manag...
	2 From the Options menu, choose Properties.
	3 For information about the properties, press F1. ...

	Setting the dbANYWHERE server URL
	To set the URL:
	1 Display the Network tab by going to the Options ...
	2 Specify the dbANYWHERE server’s port number in t...
	3 Specify the dbANYWHERE server’s IP address in th...

	Logging messages
	To display the Logging tab:
	To log messages only when dbANYWHERE is maximized:...
	1 Select the Only When Visible checkbox.
	2 Deselect the Always checkbox.

	To log messages regardless of whether dbANYWHERE i...
	1 Deselect the Only When Visible checkbox.
	2 Select the Always checkbox.

	Fields
	Log menu

	Allocating dbANYWHERE resources
	To display the Resources tab:
	Limit connect time
	Limit simultaneous sessions
	Limit system resource usage

	Allowing remote administration
	To display the Remote Admin tab:

	License
	Customer Name
	Customer ID
	Database drivers
	Limit Client Sessions
	IP Addresses
	Expiration
	Release
	Allow NT Service Protocol
	Allow Secure Protocol
	Allow Multiple Instances
	Upgrade button

	LiveUpdate
	INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

